Wendelstein

7-X

IPP

Transient phases of high performance:

Transient phases of high performance:

Wendelstein

7-X

IPP

*W*_{DIA} ~ 1.1 MJ

Transient phases of high performance:

- *W*_{DIA} ~ 1.1 MJ
- n_e profile peaking

2.0 2.5 3.0 3.5 4.0 4.5

time [s]

Transient phases of high performance:

Wendelstein

IPP

- *W*_{DIA} ~ 1.1 MJ
- n_e profile peaking
- $\bullet \quad T_i \sim T_e$

0.0

0.0

0.5 1.0 1.5

Transient phases of high performance:

- *W*_{DIA} ~ 1.1 MJ
- n_e profile peaking
- $T_i \sim T_e$
- *T_i* > 1.5 keV

3.0

2.5

2.0

1.5

10

Transient phases of high performance:

- *W*_{DIA} ~ 1.1 MJ
- n_e profile peaking
- $T_i \sim T_e$
- *T_i* > 1.5 keV
- $\tau_E \ge ISSO4$, increased τ_I
- -> reduced turbulent tansport in post pellet phase

Transient phases of high performance:

- *W*_{DIA} ~ 1.1 MJ
- n_e profile peaking
- $T_i \sim T_e$
- *T_i* > 1.5 keV
- $\tau_E \ge ISSO4$, increased τ_I
- -> reduced turbulent tansport in post pellet phase

Similar high performance observed in:

- NBI / low ECRH power scenarios
- massive impurity injections (B dropper, LBO TESPEL)

Wendelstein

pp

Main Objectives Task Force I

Main Objective	Scientific Goal	Measures of success / deliverables
Exploration of reduced turbulence / high performance scenarios w.r.t. stationary plasma conditions, kinetic-, density-, and impurity-profile control	 Demonstrate steady-state viability of increased performance scenarios after pellet / impurity injections as well as low ECRH/NBI heated plasmas Qualify actuators for the control of profiles and impurities 	 High plasma performance in the order of seconds, including <i>T_i</i> above clamping limit (1.5 keV) <i>τ_E</i> equal or better to ISS04 scaling Avoidance of impurity accumulation Assess density profile control

Main Objectives Task Force I: Upgraded NBI System

NBI System:

- 2nd NBI box in operation during OP2.1
- Power: 4.5 MW per box
- Pulse length: 5 seconds

Main Objectives Task Force I: Upgraded ECRH System

ECRH System:

- New 1.5 MW gyrotron for OP2.1
- Power: 6.5 + 1 MW in plasma

Main Objectives Task Force I: Upgraded ICRH System

ICRH System:

- Currently being installed at W7-X
- Max coupled RF power: 1 1.5 MW
- Heating scenarios:
 - 4He/H, 4He/3He, 3 ion-scheme

Wendelstein

IPP

• plasma start-up with ICRH?

Main Objectives Task Force I

Main Objective	Scientific Goal	Measures of success / deliverables
Exploration of reduced turbulence / high performance scenarios w.r.t. stationary plasma conditions, kinetic-, density-, and impurity-profile control	 Demonstrate steady-state viability of increased performance scenarios after pellet / impurity injections as well as low ECRH/NBI heated plasmas Qualify actuators for the control of profiles and impurities 	 High plasma performance in the order of seconds, including <i>T_i</i> above clamping limit (1.5 keV) <i>τ_E</i> equal or better to ISS04 scaling Avoidance of impurity accumulation Assess density profile control
Exploration of heating scenarios using upgraded plasma heating capabilities (ECRH, NBI, ICRH)	 Extension of NBI operation space and preparation of fast ion diagnostics Observation and prediction of fast ion losses for machine safety and validation of simulations tools 	 Demonstrate effective ion heating Exhaustive operational map of the W7-X configuration space incl. operation limits Safe operation w.r.t. NBI/ICRH induced fast ion losses Validation of fast ion loss simulation tools

Main Objectives Task Force I

Main Objective	Scientific Goal	Measures of success / deliverables
Exploration of reduced turbulence / high performance scenarios w.r.t. stationary plasma conditions, kinetic-, density-, and impurity-profile control	 Demonstrate steady-state viability of increased performance scenarios after pellet / impurity injections as well as low ECRH/NBI heated plasmas Qualify actuators for the control of profiles and impurities 	 High plasma performance in the order of seconds, including <i>T_i</i> above clamping limit (1.5 keV) <i>τ_E</i> equal or better to ISS04 scaling Avoidance of impurity accumulation Assess density profile control
Exploration of heating scenarios using upgraded plasma heating capabilities (ECRH, NBI, ICRH)	 Extension of NBI operation space and preparation of fast ion diagnostics Observation and prediction of fast ion losses for machine safety and validation of simulations tools 	 Demonstrate effective ion heating Exhaustive operational map of the W7-X configuration space incl. operation limits Safe operation w.r.t. NBI/ICRH induced fast ion losses Validation of fast ion loss simulation tools
Develop high beta plasma scenario by means of low field operation	 Development of a plasma startup scenario @ B=1.7 T employing X3 / ICRH / NBI heating Fast ion confinement at high plasma-beta 	 Reliable plasma startup scenario @ 1.7 T Demonstration of improved fast ion confinement of W7-X at high beta Develop capability to extrapolate B-field dependency to high-field reactor operation