Main Objectives for Task Force II

Main Objective	Scientific Goal	Measures of success / deliverables
Integrated scenarios for long-pulse operation with PFC heat load control, efficient particle exhaust, and impurity screening	 Control of divertor/baffle loads and actuation of heat load distribution Studies on particle exhaust and optimization of plasma fueling schemes 	 Demonstration of safe divertor scenarios to avoid overloaded plasma-facing components Determination of trim and/or control coil currents required to correct error fields Demonstration of effective pumping, high divertor compression, and qualification of fueling actuators Demonstration of long-pulse operation (1 GJ energy turnaround)
Development of long, stationary divertor detachment scenarios with and without impurity seeding	 Creating conditions for detachment by tailoring edge plasma conditions and impurity seeding Compatibility of stationary detachment with high- performance scenarios Development of detachment scenarios with efficient exhaust 	 Demonstration of scenarios with long, stationary divertor detachment; in particular, for the high-mirror, high-iota and standard configurations Characterize the conditions under which detachment is possible Compatibility of detachment with high-performance scenarios Achieve rapid transition to detachment

Main Objectives for Task Force II

Main Objective	Scientific Goal	Measures of success / deliverables
Exploration of scenarios compatible with carbon-free operation and tungsten PFCs	 Migration (erosion, deposition) of tungsten-based materials and assessment of operation limits Edge scenario development for metallic plasma-facing components 	 Definition of the operation limits associated with plasma-facing components containing tungsten materials Characterize the scrape-off layer retention for tungsten impurities (eroded from baffle and heat shield) Determination of erosion effects due to seeding impurities
Development of wall conditioning procedures	 Optimization of glow discharge cleaning, boronization, and qualification of dedicated wall conditioning discharges with ECRH/ICRH 	 Condition walls to enable plasmas with high density gradients necessary for high performance

reference discharge for edge studies (attached conditions, with good diagnostic coverage)
-> progress evaluation, code validation