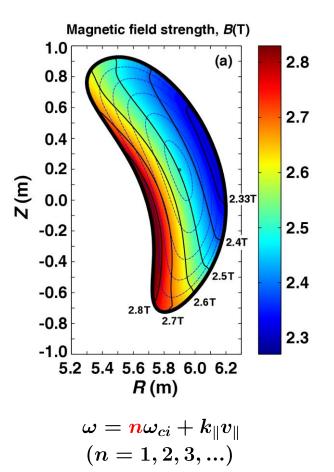

Joint Meeting of the Topical Groups "Heating" and "Fast Ions" ICRF commissioning plans and operation in OP2.1 25/01/2022

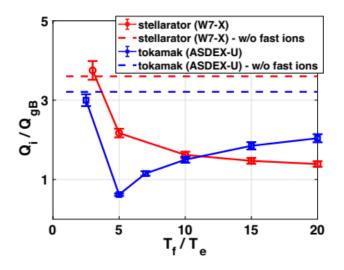
D. Hartmann, Y. Kazakov, J. Ongena, S. Bozhenkov, K. Crombé


Outline

- OP2.1: ICRF system and operations summary
- ICRF planning during the plasma commissioning phase
- ICRF planning for the scientific program
- OP2.2: future planned ICRF studies (draft ideas)

Project team:

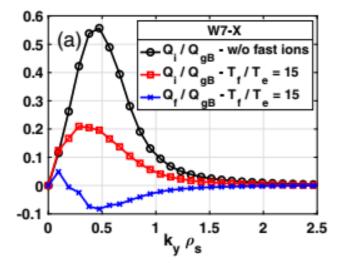
- LPP-ERM/KMS: Jef Ongena, Bernd Schweer, Michel Vervier, Ivan Stepanov, Kristel Crombé, Pierre Dumortier, <u>Yevgen Kazakov</u>
- FZJ: Olaf Neubauer, Guido Offermanns, Klaus-Peter Hollfeld, David Castaño-Bardawil, Guruparan Satheeswaran, Dirk Nicolai, Andreas Krämer-Flecken, Rudi Caspers
- IPP: <u>Dirk Hartmann</u>, J. Peter Kallmeyer, R. Kairys, Matthias Stern, Andree Benndorf, Matthias Werner, Robert Wolf

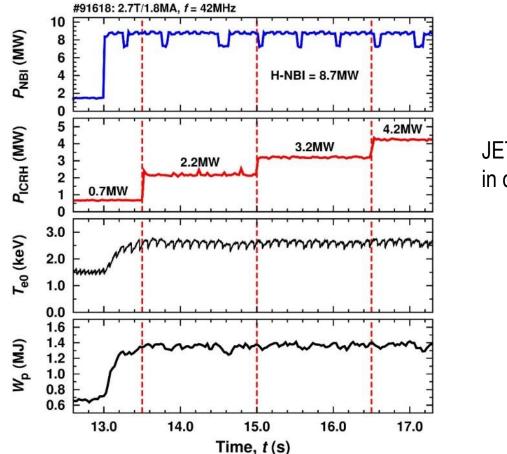

ICRF system and operations in OP2.1: short summary

- Two-strap antenna
- One RF generator and limited RF power (two RF generators in OP2.2)
- Two frequencies: *f* = 38MHz and 25MHz
- Two phasings: dipole and monopole (more phasings available in OP2.2)
- Focus: bringing the RF system into safe routine operation for its various applications in W7-X (fast-ion physics, *T*_i heating, MHD, turbulence studies, start-up, ICWC, etc.)
- Test and optimize the system for various magnetic configurations (antenna position, RF coupling, central magnetic field, etc.)
- ⁴He plasmas: max. power operations, H minority scheme
- H majority plasmas: low-power operations (~100kW max.), primarily for start-up and ICWC explorations
- Test ICRF for start-up at 1.7-1.8T
- No ³He ICRF in OP2.1

Main ICRF scenario in OP2.1: H minority in ⁴He plasmas

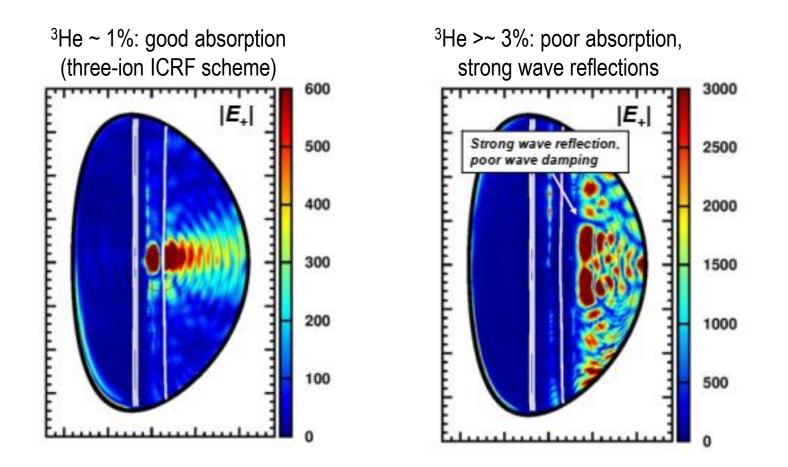
- Well-established ICRF scenario
- Scenario optimization possible: H concentration, magnetic field (on- vs. off-axis), coupling, etc.
- Advantage: good ICRF absorption for a wide range of hydrogen concentrations, ~2-15%
- Recent theoretical insights for W7-X: ITG stabilization by ICRF-generated fast ions



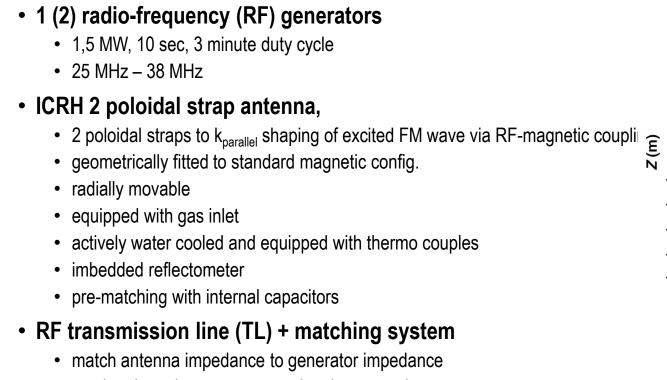

FIG. 1. Nonlinear main ion heat fluxes in GyroBohm $(Q_{\rm gB})$ units for different energetic particle temperatures T_f/T_e . The horizontal dotted lines denote the fluxes obtained without fast ions (w/o denotes without).

More details: A. Di Siena et al., *Phys. Rev. Lett.* (2020) Assumed conditions: $n(H)/n_e = 6\%$, $T_{fast}/T_e = 15$

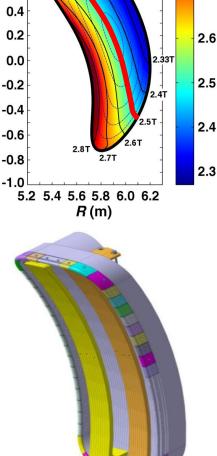
FIG. 2. Nonlinear saturated (a) main and energetic ion heat flux spectra and (b) velocity space structure of $Q_f/Q_{\rm gB}$ averaged over k_x , k_y , and z at $T_f/T_e = 15$ (w/o denotes without). The black


These studies require full-power ICRF with 2 generators available (OP2.2)

ICRF in hydrogen majority plasmas in OP2.1 (without ³He): only low-power operations (~100kW max.)


JET-ILW example: P_{ICRF} = 1-4MW, in combination with NBI, no RF absorption

- Poor ICRF absorption
- Only low-power operations (~100kW max.) allowed: primarily for start-up and ICWC explorations



- New ICRF system: 'first climb-up the mountain, then pick the Edelweiss'
- No ³He ICRF in OP2.1

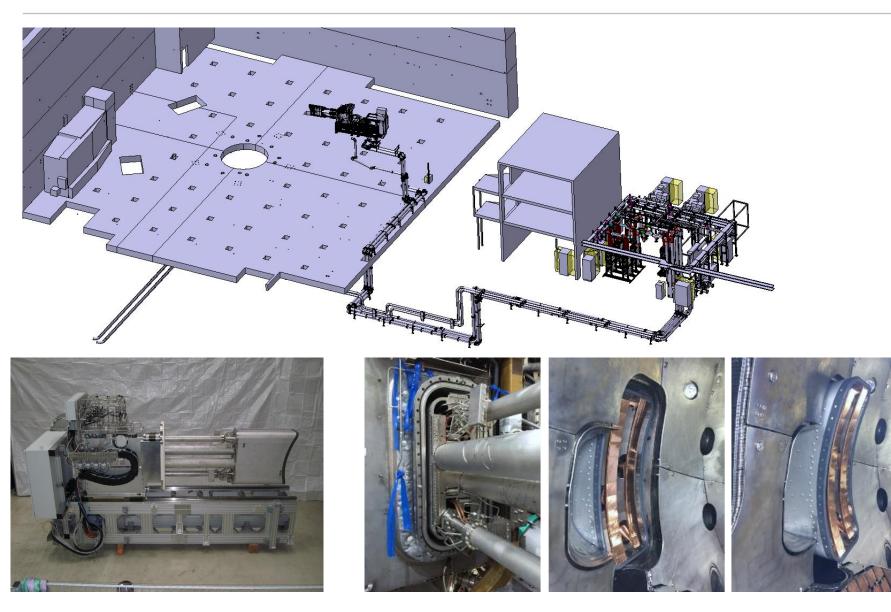
Technical setup of the ICRH system

set the phase between straps, thus k_{parallel} spektrum

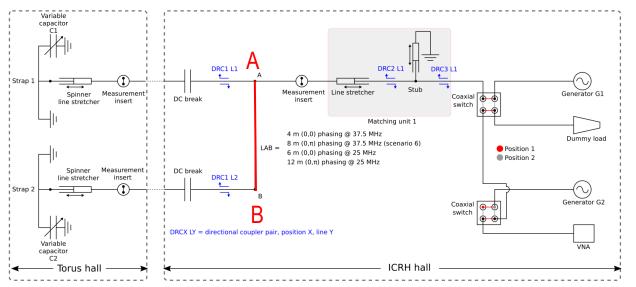
Magnetic field strength, B(T)

(a)

2.8


2.7

1.0


0.8

0.6

ICRH hardware

ICRH system in OP2.1

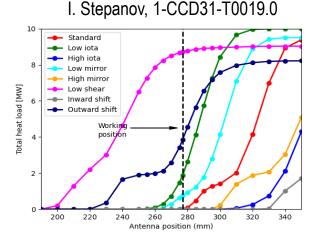
Kallmeyer 1-CCC-T0056.2

In OP2.2 extension to arbitrary phase with 2 generators

Section AB

Challenges of the ICRH System

• Requirements for strong excitation of Fast Wave


- antenna close to plasma density of 2 10¹⁸m⁻³ along the poloidal straps
- antenna sufficiently far from LCFS to avoid plasma damage
- antenna impedance matching possible
- sufficiently high voltage stand-off in antenna and TL system

• Technical commissioning (April – August 2022)

- RF generator operation onto RF calorimeter for 38 MHz and 25 MHz
- determine vacuum matching of the antenna for operation frequencies and phasing
- antenna conditioning to increase voltage standoff in antenna and transmission lines.
- Check for RF leaks

• Plasma commissioning (September – Oktober 2022)

- Operation principles for OP2.1
 - RF generator power <= 100 kW without absorption mechanism in the plasma
 - · Generator operation only by ERM-KMS personnel
 - No He3 operation
- For each magnetic configuration
 - · determine operation position of the antenna
 - determine impedance matching
 - Increase power and duration to about 1 sec and about 500 kW (?)
- For each antenna frequency or phasing
 - Determine impedance matching

ICRH plasma commissioning

#	Purpose	ICRH System Modification	Mgn. Conf.		Freq [MHz]	Phasing	working gas	Absorption	max. RF power [kW]	target plasma	Required session [session]	Duration mechancial work [day]
1	antenna position		std.	2,5	38	pi	He	He (H)	0	ECRH	1	0
2	plasma operation		std.	2,5	38	pi	He	He (H)	500	ECRH	1	0
3	antenna position and operation		high mirror	2,5	38	pi	Не	He (H)	500	ECRH	1-2	0
2	antenna gas inlet		high mirror	2,5	38	pi	Не	He (H)	500	ECRH	1	0
5	plasma startup		tbd, but known	2,5	38	pi	Не	He (H)	500	ECRH	1	0
		pi phasing, 25 MHz			25							1
e	plasma operation		tbd, but known	2,5	25	pi	Не	none	100	ECRH	1	0
7	plasma startup		tbd, but known	1,8	25	pi	He	He (H)	500	none	1	0
5	plasma startup		tbd, but known	1,8	25	pi	Hydrogen	none	100	none	1	0
		0 phasing, 25 MHz										2
ç	plasma startup		tbd, but known	1,8	25	0	He	He (H)	500	none	1	0
10	plasma startup		tbd, but known	1,8	25	0	Hydrogen	none	100	none	1	0
		0 phasing, 38 MHz										2
11	plasma operation		tbd, but known	2,5	38	0	Helium	poor He (H)	100	none	1	0
12	plasma startup		tbd, but known	1,8	38	0	Helium	none	100	none	1	0
13	plasma startup		tbd, but known	1,8	38	0	Hydrogen	none	100	none	1	0
		pi phasing, 38 MHz										2
14	plasma operation		new confg.	2,5	38	pi	He	He (H)	500	ECRH	1	0

Planned ICRF capabilities at the start of the scientific programm of OP2.1

ICRF system commissioned

- · Launched RF power from the antenna known
- · Safe operation for certain magnetic configurations
- · Reliable prediction of the antenna matching based on measurements

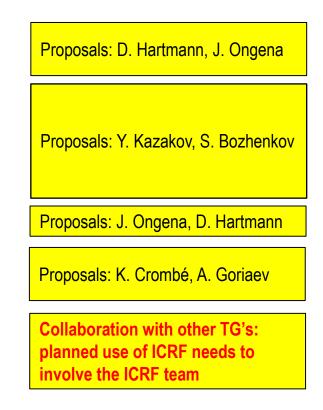
• Plasma heating experiments

- Hydrogen minority in helium plasmas at B=2.5 T
 - Generation of fast hydrogen and possibly fast helium (fast = over thermal)
 - Standard configuration, high mirror magnetic configuration
 - "P_{RF} 500 kW, 1 sec"
 - Antenna phasing 180°
- Possibly hydrogen heating in helium plasmas at B=1.8 T

• Plasma startup

• Startup in helium or hydrogen at 2.5 T and 1.8 T

ICRF-related proposals for OP2.1


• All planned topics (see slide 11) that were not performed in the plasma commissioning

• Further goals

- Coupling studies: max. RF power including antenna gas inlet
- Test ICRF antenna gas inlet with various gases (H and ⁴He)
- Hydrogen concentration scan
- *B*₀-scan to change the ICRF position: on-axis vs. off-axis deposition
- Preparation of the scenario for future dedicated fast-ion studies (incl. ECRF and NBI power scan)
- · Test ICRF operations in the presence of pellet fuelling
- Test the modulation of ICRF power
- ICWC
- Start-up
- Characterization of plasma edge in the presence of ICRH
- Preparation of ICRF for future dedicated turbulence, MHD studies, etc.:

• Diagnostics

- Edge ne and Te profiles (endoscopes in sectors 3 and 5)
- Fast-ion detection
- Wall observation
- Impurity observation
- Hydrogen concentration
- ICE

Dedicated meeting on the plasma start-up at 1.7T: next Tuesday, 01/02/2022, **14:00**

Outlook of ICRF operations for OP2.2

- H minority heating: maximize ICRF power with two generators (dipole phasing)
- Extend the system for additional antenna phasings (e.g., current drive phasing)
- Start using ³He and three-ion ICRF scenarios
- ICRF heating in the presence of pellet fuelling

Future dedicated fast-ion, scenario, turbulence, MHD studies, etc. involving ICRF

- Collaboration with the corresponding TG's
- The discussion should involve the ICRF team