TSVV-07 requests for ACH support

Code Name	Tasks required to ACH	ACH cat.	PMs/ year	Priority 2021	Priority 2022	Details/Comments
BIT-1D, BIT-3D	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	2.5	Low	Low to Medium	One might have set all IMAS tasks to I make them IMAS compatible (input-o
ERO2.0	Improved parallelization, such as e.g. compiler optimization and GPU	Cat I. (HPC)	1.5	High	High	Xavier Saez from BSC (ACH CIEMAT) is probably no need to repeat details he
ERO2.0	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	2.5	Low	Low to Medium	See comments for BIT.
MEMOS-U	Improvement of code architecture, modularity, memory usage	Cat I. (HPC)	1.5	Low	Medium to High	Employs the finite difference method parallelized and runs on IO clusters, b
MEMOS-U	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	1.5	Low	Low to Medium	See comments for BIT.
MIGRAINe	Ensure HPC compatibility of the effective parallelization of serial simulations	Cat I. (HPC)	0.8	Medium	High	Being an ODE solver, MIGRAINe is inh batches. Code parallelization & optim
MIGRAINe	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	1.5	Low	Low to Medium	See comments for BIT.
RAVETIME	Upscaling from cluster-parallel to HPC-parallel and GPU-enabling	Cat I. (HPC)	1.2	Low	Low	RAVETIME is a parallel finite-volume a computing project VECMA on UQ met
RAVETIME	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	0.5	Low	Low	Probably from 2024.
Retention codes	A framework for effective parallelization at a later stage of the project	Cat I. (HPC)	1	Low	Low	Probably from 2024.
Retention codes	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	1	Low	Low	Probably from 2024.
SDTrimSP-1D, SDTrimSP-3D	Upscaling from cluster-parallel to HPC-parallel	Cat I. (HPC)	1.2	Low	Medium to High	Monte-Carlo codes for transport of io
SDTrimSP-1D, SDTrimSP-3D	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	1	Low	Low	Probably from 2024.
SPICE-2D, SPICE-3D	Upscaling from cluster-parallel to HPC-parallel	Cat I. (HPC)	1.2	High	High	Particle-in-Cell codes. Have already re Poisson solver in 3D needs some bug
SPICE-2D, SPICE-3D	Code adaptation to IMAS, focusing firstly on IMAS compatible outputs	Cat II. (IM)	1.5	Low	Low to Medium	See comments for BIT.
Interatomic potential development	Optimization and GPU-enabling	VTT	1.2	Low	Medium	VTT ACH because it is in-house for the

TSVV-07 Cat.2 IMAS PM/year	TSVV-07 Cat.2 IMAS ppy/year	TSVV-07 Cat.2 IMAS ppy total
12.0	1.00	5.00
+	+	+
TSVV-07 Cat.1 HPC PM/year	TSVV-07 Cat.1 HPC ppy/year	TSVV-07 Cat.1 HPC ppy total
9.6	0.80	4.00
=	=	=
TSVV-07 Total PM/year	TSVV-07 Total ppy/year	TSVV-07 Total ppy total
21.6	1.80	9.00

ow priority, however it is very difficult to say how much effort it will be for complex codes to utput), so better to start earlier.

s in charge of ERO2.0 support in the frame of expiring HLST, respective proposal is available, so ere. High priority since ongoing project, better to keep the grip.

l solving coupled Navier-Stokes and heat convection-diffusion equations. The code is already but would benefit from further parallelization and optimization.

nerently serial. Effective parallelization can be achieved by splitting the simulated trajectory nization necessary to ensure compatibility with HPC clusters.

3D transport code designed to take advantage of developments within the European Exascale thods. Deliverables from 2024.

ons in matter using binary collisions approximation.

eceived support from HLST IPP (Serhiy Mochalskyy from Garching, Roman Hatzky). Parallel fixes. Parallel Poisson in 2D is desired (is not straigt-forward).

e respective group. Deliverables from 2023.