

SP-F Task Specifications

Leena Aho-Mantila

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Introducing the team and primary topics

XD, SX F. Subba G. Rubino P. Chmielewski A. Järvinen

Modelling support M. Blommaert

Reduced models / connection to experiments *A. Järvinen*

> SN WPDES F. Subba L. Aho-Mantila

Nobody is working in isolation, regular group meetings

Goals of the 2021 modelling work

- Obtain simulation database for missing configurations (SF-, later possibly DDN)
- Verification and deeper understanding of observed benefits (XD, SX, CDN)
- Guidance for experimental validation
- Input to SPL/PL for preparation of spider diagram

Challenges:

- many modellers with small contributions (< 4 ppm/year)
- not much time to complete the studies (1-2 years)
- => Need limited, well-defined tasks, commitment and regular discussions

Picture to verify

- P_{sep} higher than expected, f_{rad} lower than expected (expected values: P_{sep} =150 MW, f_{rad} >90%)
- No X-point radiating regime observed in the DEMO solutions (mandatory in e.g. AUG for detachment in H-mode) => possibly a true feature of DEMO edge, but missing physics and possibly inaccurate setups needs to be checked

Study 1: neutrals

- Use advanced neutral fluid models (SN, XD, SX)
- Study effects of leg geometry
- Lessons learned from SN kinetic neutral simulations?

G. Rubino A. Järvinen L. Aho-Mantila F. Subba M. Blommaert

Study 2: transport levels

- Sensitivity of simulation results to the assumed cross-field transport levels (SN,XD,SX)
- Radiation pattern expected to move upwards from the targets with decreasing λ_q

P. Chmielewski F. Subba

Example variation of SOL heat flux width with poloidally constant transport coefficients:

Study 3: core radiators

- PROCESS predicts P_{sep}=150 MW, ADC simulations suggest higher P_{sep}
- How does core radiation modify the radiation pattern near the X-point?
- Do we see benefits in DN when the full heating power is taken into account?

F. Subba L. Aho-Mantila G. Rubino

Study 4: drifts

- More seeding required in both SN and DN to obtain detached solutions when drifts are activated
- Analysis for SN and DN in 2021, later possibly for other configurations

Study 5: comparison with experiments

- Building reduced models only makes sense if we believe that we model the radiative regime correctly in our DEMO simulations
 - Parametric dependencies will likely be different for the X-point radiation compared to divertor radiation
- In the first stage, we should do a cross-comparison between DEMO detached solutions and detached conditions in present-day experiments
 - Reasons for the differences need to be understood!
- This is being carried out for SN, but should be extended to the alternative configurations

A. Järvinen L. Aho-Mantila

Organization of work

- Regular zoom meetings
 - Weekly or bi-weekly
 - Joint meetings with SP-G (experiments)
 - Inviting other experts for specific meetings
 - No Slack this time (would not be regularly followed due to the small individual contributions)
- Data exchange, computional requirements
 - To be discussed, MDSplus for simulation data exchange