Status and prospects of ERO2.0 activities relevant to TSVV-7

J. Romazanov, on behalf of the ERO2.0 team

Member of the Helmholtz Association

Outline

- Introduction to the ERO2.0 code
- Application to ITER as proxy for DEMO
- Studies on erosion of rough surfaces
- Embedment of ERO2.0 in TSVV-7
- Overview of planned developments

Introduction to the ERO2.0 code

Components of the ERO2.0 model

- (1) Wall geometry model
 - polygon mesh + material distribution
- (2) Background plasma model
 - constant input plasma background $(n_e, T_e, T_i, v_{II}, E, B)$
 - imported from edge plasma codes (SOLPS-ITER, EMC3-EIRENE, ...)
 - shadowing correction (based on 3D magnetic field line tracing)

(3) PMI model

- sputtering yields & reflection coefficients \rightarrow imported from BCA & MD codes + assumptions about impact distributions
- assumptions on the initial surface roughness
- material mixing model \rightarrow homogeneous mixing (HMM)
- (4) Transport model
 - test particle trajectories (solutions of Fokker-Planck equation)
 - atomic data (ionisation & recombination rates, photon efficiencies) from ADAS

Application to ITER: erosion of the First Wall (FW)

- 2D plasma background from OEDGE (SOLPS + extended grid by onion-skin model)
- 3D wall geometry: 20° toroidal sector + periodic boundaries
- ERO2.0 modelling:
 - Beryllium (Be) steady-state erosion due to D ions, D CX neutrals, Be self-sputtering
 - One of the important outputs is Be net erosion (deposition minus erosion) which is relevant for lifetime predictions
 - Typical net erosion fluxes are $\sim 10^{21}$ Be/m²/s (gross erosion is ~10 times higher)
 - About 10% of Be migrates to the divertor, 90% stays in main chamber
 - Study was extended to various plasma conditions and to scan other simulation parameters (e.g. background particle impact angle)

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

J. Romazanov et al.,

Typical model uncertainties

- Impact angle distributions: •
 - Known only for particles "tracked" by ERO2.0! (here: Be)
 - For "background particles" (here: D) needs simplified _ assumptions (e.g. constant impact angle) or importing from other codes (e.g. EIRENE \rightarrow CX, PIC \rightarrow ions)
 - Can change erosion by an order of magnitude!
 - Affected by surface roughness (more on this later)
- **Plasma parameters at surface:**
 - E.g. plasma flux, temperature
 - Extrapolation needed due to grid gap of SOLPS

 10^{-2} 10^{-3}

-25

-20

-15

J. Romazanov et al.. presented at PSI (2021)

Influence of D impact angle

 $\lambda = 0.1 \,\mathrm{cm}$

5

Member of the Helmholtz Association

 $R - R_0$ [cm] j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

-10

-5

0

6

Parameter study: ITER with full-tungsten wall

- DEMO needed predictions of W erosion/deposition to assess wall lifetime, retention, dust production
- No suitable wall description or plasma backgrounds were available → used ITER as a proxy

Results:

- Overall main wall erosion much smaller compared to Be wall (factor ~10⁴)
- W sputtering at main wall only due to D CX neutrals and self-sputtering
- 99% of sputtered W at main re-deposited at main wall (or gaps at main wall), 1% flows to divertor
- Study was extended to different magnetic configurations and seeding impurities (Kr, Ar, Ne, Xe) at various concentrations

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

A. Eksaeva et al.,

presented at PFMC (2021)

Roughness: introduction

- Micro-scale surface roughness exists from sample preparation
- Roughening during plasma exposure observed for some samples (cones, needles, fuzz)
- Surface roughness has several effects on erosion:
 - Immediate redeposition of sputtered atoms inside the structures
 - Reduces sputtering yield
 - Collimates sputtered angular distribution
 - Incoming angular distribution different from a flat surface

ERO2.0 simulations on a micro-scale with arbitrarily shaped, pre-defined rough surfaces are possible

Initial rough surfaces must be pre-defined (AFM/SEM measurements or analytical shapes \rightarrow somewhat arbitrary)

Example of pre-defined regular surface in ERO2.0 (3D cosine peaks)

erosion

Roughness: application to JET

- Post-mortem analysis shows:
 - Tile 6 has ~2x larger roughness than tile 5
 - Tile 6 also has~2x lower net erosion rate \rightarrow causality?
- Micro-scale simulations performed with different rough surfaces
 - randomly generated fractal surfaces
 - regular cosine peak surfaces

Simulations confirm that roughness may explain the factor ~2 difference in erosion from different JET W divertor regions

More detailed studies needed to understand origin of roughness, and rule out other possible reasons (e.g. same plasma parameters were assumed for Tile 5 and 6)

JET divertor and post-mortem analysis

Example of ERO2.0 simulations with assumed fractal surfaces

Evolution of rough surfaces

- Comparison with analytic Skeren model:
 - Reasonable agreement shown for W surface evolution
 - But: smoothing algorithm in ERO2.0 leads to overestimated surface smoothing in the long run.
- Influence of grains:
 - ERO2.0 model does not include grains, but Skeren model does. What is the possible influence of grains?
 - Larger grains \rightarrow roughening, compared to single-crystal solution

Member of the Helmholtz Association

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

G. Alberti et al, PFMC conference (2021) G. Alberti et al, Nucl. Fusion (2021)

Connection to EUROfusion grant on Machine Learning methods

Development of machine learning methods and integration of surrogate model predictor schemes for plasma-exhaust and PWI in fusion

- EnR sub-project 3: "Model discovery for erosion yields through ML methods"
- Example: influence of background particles impact angle distribution
 - Method 1: set to some reasonable constant value (e.g. 0°, 60°, ...)
 - **Method 2**: create distributions $f(\theta)$ database with the aid of ML:
 - magnetic field strength and inclination angle
 - sheath properties (ne, Te, Zeff, ...)
 - roughness
- TSVV-7 can create DEMO-relevant "training set" for EnR

Member of the Helmholtz Association

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

Flowchart: data flow to and from ERO2.0 in TSVV-7

Manpower for TSVV-7 at FZJ

Postdoc position for ERO2.0 activities is now tendered!

Person-months at FZJ

		2021	2022	2023	2024	2025	
Dmitry Matveev	Task leader; retention	6	6	6	6	6	
Juri Romazanov	ERO2.0	0	0	6	6	6	
Sebastian Rode	ERO2.0	6	9	6	6	6	
NN (Postdoc)	(ERO2.0?)	6	6	6	6	6	
Σ		18	21	24	24	24	

ERO2.0	Preps (geom., bg)											Deposition in gaps					
			Simulations ITER-like								SDTrimSP-1D coupling						
							Simulations DEMC						SDTrimSP-3D data and coupling				

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

Model improvements:

Foreseen improvements of ERO2.0

- Importing spatially resolved background impurities (e.g. seeding species)
- "Advanced mixing model" (depth resolution of material concentrations)
- Spatially resolved anomalous diffusion coefficient for impurities
- Feedback of impurities on the plasma (iterative scheme "Tokar model")
- Improved core impurity transport (COREDIV coupling)
- Improvement of micro-ERO2.0 roughness model (eliminate smoothing artifacts, consider grains)
- Integrated modelling:
 - Direct coupling to SDTrimSP (on-the-fly sputt. yields and reflection coeff., depth resolution)
 - Improved (automatic) coupling to SOLPS-ITER (or other transport codes) + iterative scheme
 - Direct coupling to CRDS (fuel content influences physical + chemical sputtering)
- Others:
 - IMAS compatibility
 - Improved MPI-OpenMP scheme; vectorization; GPU parallelization

j.romazanov@fz-juelich.de | 10.05.2021 | TSVV-7 KOM

OCPC started

ACH support needed