

Retention and permeation modelling: mechanical and He effects; cross-code validation

J. Mougenot¹, R. Delaporte-Mathurin^{2,1}, E. Hodille², Y. Charles¹, C. Grisolia²

¹Université Sorbonne Paris Nord, LSPM, CNRS, UPR3407, F-93430, Villetaneuse, France ²CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

Fuel retention task

7

One of the TSVV#7 objectives: Assessment of tritium in-vessel inventory (codeposition, bulk retention with He-induced and neutron damage)

		2021			2022				2023				2024				2025				
	Placma	ITER bg proc.				DEMO bg proc.								Updates from			DEMO team:				
	Flasma					VDE, LOC values			VDE, LOC profiles			geometry, materia				ls, plasma profiles					
	віс	Sheath ion			distrib.			Gaps													
	FIC	Thermionic & SEE										BIT3 vs BIT1				L					
	D\A/I 1	W erosion under D				/T supersaturation									W-0)-H p	oten	tial			
	PVVII											٧	V-O po	otential							
	PWI2					Gyromotion			SDTrimSP-3D				UQ interface			UQ studies					
		Pre	eps (g	eom.,	bg)									Depo:	sitio	n in ga	ips				
•	ERO2.0	Simu				lations ITER-like			SDTri			mSP-1D coupling									
									Sim	ulations DEMO SDTrimS					mSP-3l	D da	data and coupling				
	Fuel	Thermomigration			Simulations DEMO			Simulations DEMO			He (H diffusion)			He (W mechanical)							
	retention	Interface model			w/o n-damage			with n-damage													
	retention	Test cases											UC	lint	erface			UQ st	tudies		
	Transient						Pro	eps													
	melting								1	vleltin	g, spl	ashin	g								
	Dust	Scoping studies			Simulat			ions DEMO steady													
	Dust		Simulations ITER-like									Sim	ulat	ions D	EMC) tran	isient	s			
									Rei	oort D	EMO	CDR							Final	геро	rt

Inventory in subsurface and bulk

Material properties (diffusion, trap, solubility)

Plasma facing side

Three existing model to adress issues

Based on the resolution of a reaction-diffusion model (McNabb & Foster, TMAP...) including transient trapping

MHIMS code

Fortran code – 1D Finite Difference (DLSODE solver)

• Focused on surface/subsurface effects: non-equilibrium flux balance, supersaturated layers, coverage dependant desorption energies...

• Multi-trapping

Hodille *et al.,* Nucl. Fusion **57** (2017) 056002

Abaqus code

Fortran subroutines – 1D/2D/3D Finite Element (Commercial solver)

• Includes mechanical effects: diffusion assisted by hydrostatic pressure & traps induced by plastic strain

Benannoune *et al.* Phys. Scr. **T171** (2020) 014011

FESTIM code

Python – 1D/2D/3D Finite Element (Fenics)

- Tokamak scale & high level of coupling with plasma parameters (machine learning)
- Great optimisation of computional time; huge effort on validation/verification processes; coupled with optimisation algorithms

Delaporte-Mathurin *et al.* Sci Rep **10** (2020) 17798

MHIMS: Coverage dependent desorption energy

Steady-state modelling to derive coverage dependance of activation energies from 2 sets of experimental data

E.A. Hodille *et al.* Nucl. Fusion **60** (2020) 106011

Increasing temperature leads to a Θ decrease and so to an increase of E_D

Abaqus: Mechanical field effect

FESTIM: Interface

J. Mougenot | TSVV#7 K.O. | 11th May 2021 | Page 7

Work plan for 2021

Year 1: ITER-like plasma case						
M1.6	Validation of the interface model of FESTIM is completed.					
M1.7	Common test cases for retention modelling are identified.					
M1.8	HPC optimization requirements for the codes are identified, the respective work initiated.					

M1.6 Equilibrium interface model is enough / Focus on impurities

M1.7 Based on our published case? Add thermomigration (Soret effect)?

(+) He transport model & bubble growth (work in progress)

M1.8 Not required for our codes

Code diffusion or restriction? (co-funded existing codes; full open source discussions)

Experimental results of diffusion across interfaces PWIE (W/Eurofer & W/Cu or others) Interface description (graded interface? Impurities?) Material data (Soret coefficient)

Work plan for the next years

Year 2: SOLPS DEMO solution M2.8 Neutron damage model with damage stabilization is implemented in FESTIM and TESSIM-X (validation not yet completed). M2.9 TESSIM-X, MHIMS and FESTIM simulations of H retention under DEMO conditions (without n-damage) and relevant material structures are performed. M2.10 IMAS compatibility requirements for the codes are detailed and the work is initiated.

Year 3: Conceptual design review						
M3.7	TESSIM-X and FESTIM simulations of H retention under DEMO conditions (with n-damage) and relevant material					
	structures are performed and cross-validated.					
M3.9	Integrated results regarding W erosion (steady state and transients) and T retention for the DEMO conceptual					
	design review are reported.					
M3.10	Intermediate results on IMAS interfaces implementation are reported.					

M3.9 Impacts of W erosion on the boundary conditions of MRE codes

Work plan for the next years

Year 4: Extended analysis

M4.6 Role of He clustering on H diffusion and retention is assessed.M4.8 IMAS compatibility is implemented.

(M4.6) He damage (traps concentration and evolution) given by He transport and bubble growth model and then included in H transport code

Year 5: Final reporting						
M5.2	Role of He clustering on mechanical properties of W is assessed.					
M5.7	HPC optimization completed.					
M5.8	IMAS compatibility between codes and their interfacing is complete and tested.					
M5.9	Integrated results on W erosion (steady state and transients) and T retention are reported.					

Questions/remarks?

