Documentation EP workflow

popaalin8100

1 Resources

Some of the resources I found useful when building the Python version of the WF

1. https://confluence.iter.org/display/IMP/Integrated+Modelling+Home+Page -> for
keeping track of new version of IMAS/PyAL/FC2K (very important!!)

(a) https://jira.iter.org/projects/IMAS?selectedItem=com.atlassian.jira.jira-projects-

plugin:release-pagestatus=released -> IMAS dictionary changes

(b) https://confluence.iter.org/display/IMP/Access+Layer-> HDF5 or MDS+ back-

end for Python

2. https://user.iter.org/?uid=YSQENWaction=get_document -> Backend functions doc-
umentation for retrieving/manipulating/storing data (Not only Python but also

Fortran, C++ and Java)

3. https://docs.psnc.pl/display/ WFMS/FC2K+Python+wrapper+redesign -> FC2K ac-

tor wrapper design (useful for calling an actor after being wrapped by python)

4. https://confluence.iter.org/display/IMP/iWrap+Python+Actor -> how to build a python

actor

5. https://confluence.iter.org/display/IMP/4.1+FC2K+Basics -> small FC2K tutorial for

kepler, but the same can be used for Python (just select the python generation)

6. https://confluence.iter.org/display/IMP/3.2+Fortran+examples -> 4 examples of For-

tran code with IDSs

7. https://confluence.iter.org/display/IMP/iWrap+-+Fortran+API -> Fortran API (can

be used with FC2K to generate an actor that can be used in python wf)

8. https://confluence.iter.org/pages/viewpage.action?pageld=289069024 -> working ex-
ample of the EP WE.

9. Use the first link to keep track of the working versions of each dependency (most

of them do not have backward compatibility!!)

2 Example

In order to be able to connect the numerical tools with IMAS and to be able to per-

form time-dependent analysis on any scenario, Energetic Particle Stability Workflow was

created. This is the first time-dependent workflow which uses IMAS infrastructure to

perform Energetic particle analysis. It is written in Python and makes use also of a simple

interface which makes parameter configuration easy for both the connection to the IMAS

Database (for saving/retrieving data) and for the numerical codes themselves through a

series of XML files. A general layout of the components that the workflow uses can be

seen in Fig.1.

USER INPUT

Public: DB name
Public: Pulse number
Public: Run number
Local: User name
Local: DB name
Local: Run number
Local: Itime interval

Local info

EQIDS/0

IMAS_DB (igcal)

EQIDS/1
MHD_LINEAR /3

DISTRIBUTIONS.]
MHD_LINEAR_IDS /4

IMAS_DE (public)

-,..-

Public info

TRANSPORT CODE

EQUILIBRIUM_IDS
CORE_PROFILES_IDS
DISTRIBUTIONS_IDS

EQ_IDS
CORE_PROF_IDS

HELENA /CHEASE

IN: EQUILIBRIUM_IDS
IN: CORE_PROFILES_IDS

‘OUT: EQUILIBRIUM_ID5/0

EQ_IDS/0

EQ IDS/0

¥
HAGIS_1

IN: EQUILIERIUM_IDS /0
IN: MHD_LINEAR_IDS/0/1/2
MHD_LINEAR/0/1/2
OUT: EQUILIBRIUM_IDS/1
OUT: MHD_LINEAR_IDS /3

DISTRIBUTIONS_IDS

EQ_IDS/1
MHD_LINEAR_IDS/3

HAGIS_2

IN: EQUILIBRIUM_IDS/ 1

LIGKA(5 -4-1)

LIGKA MODE 5

IN: EQUILIBRIUM_IDS/0
IN: CORE_PROFILES_IDS

OUT: MHD_LINEAR_IDS/0

LIGKA MODE 4

IN: EQUILIBRIUM_IDS /0
IN: CORE_PROFILES_IDS
IN: MHD_LINEAR_IDS/0

‘OUT: MHD_LINEAR_IDS/1

LIGKA MODE 1

OUT: MHD_LINEAR_IDS/2

IN: EQUILIBRIUM_IDS /0
IN: CORE_PROFILES_IDS
IN: MHD_LINEAR_IDS/1

MHD_LINEAR_IDS/0 IMAS_DB (local)

-

| wetnewost ¢
b [

HD_LINEAR_IDS /2

IN: MHD_LINEAR_IDS /3
IN: DISTRIBUTIONS_IDS

OUT: DISTRIBUTIONS_IDS /0
OUT: MHD_LINEAR_IDS/ 4

Figure 1: Energetic Particle Stability Workflow general layout of the components.

Now the example that we will use is a MPI actor (mode 4 of LIGKA): Before the actor
can be used one needs to import it in python as follows: from ligka.wrapper import

ligka_actor

a_mode_4(current_ older,param

time, ntime = read_timestep(user, paraml'machine_out'l, param['run_out'l, current_config_folder)

Input sequence:
->time, ntime: taken from equilibrium for keeping track of time inside the ids
nput = imas.DBEntry(imasdef.MDSPLUS_BACKEND,param|‘machine_out'],param[‘shot_nr'l, param[‘run_out'l,user) -> input: typical reading from the db (machine,shot,run,user)
status,_ = input. 0 -> input.delete_data is optional (this deletes what was before in that occurence of the ids)
if statu
t open the selected dataset!", =sys. stderr)

input.delete_data("mhd_linear"

for itime in range(, time_runs + 1):

print('Time ', time[itime]l, ' s, itime = ', itime, '/', ntime-1)
For loop :
-> store ids in temporary variables (equilibrium_i
equilibrium_in = in e ("equilibrium”, [itime] , imasdef.PREVIOUS_SAMPLE) -> input.get_slice(ids time(from before),type of interpolation)
core_profiles_in = inpu core_ time[itime], imasdef. P
mhd_linear_in = input.ge e d e; me[itime], imasdef.PREVI here occurence is 0 (default) if not another argument is used “occurrence=...”

mhd_linear_out = ligka_actor(equilibrium_in, core_profiles_in, mhd_linear_in, current_config_folder+'/z_ligka.xml', 'mpi_local®, rocesses= paraml'mpi_processes'])

input. mhd_linear_out, o

Print (*sekiskikickickoriokkiikiioRkotoRkk !)
print('Output time = ', mhd_linear_out.time[0])
print('OUTPUT ITIME = ', itime)

print(ed mhd_linear mode 4 under oc 1')
print('x SRRRRRRARA——.

Actor running and storing the output :

-> Take actor output in a temporary variable “mhd_linear_out” (can be just as well 2 variables, in that case it will be like: ids1,ids2=actor(...)
-> actor(ids_in (in order that was made in FC2K), xml path, (if actor is wrapped with MPI by FC2K then the last part is necessary: mpi_local(do not change), mpi_processes default value is 4)
-> input.put_slice(ids,occurence number) is the standard way of storing data that is sliced in timesteps)

input. close()

Figure 2: Example of a typical actor inside a WE.

An example of a working FC2K is the ligka actor: load modules from EP WEF by follow-
ing the tutorial in the confluence page. Then clone ligka and in root of the dir fc2k com-
mand. Then open the file named ligka_ WF-PY.xml and check out the parameters/compare

them with the ones in the documentation.

