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• Since the past two decades, an outstanding effort has been invested to understand non-

diffusive, non-Gaussian scaling of the radial dispersion of passive particles within

models of three-dimensional, resistive, pressure-gradient-driven plasma turbulence in

both cylindrical [44: del-Castillo-Negrete et al. PP 2004] and toroidal [45: Garcia and

Carreras PP 2006] geometris. Here, we propose to take the next step, and to extend the

statistical analysis of the radial displacements of passive particles to the different EP

transport models used within this project.

• The bottleneck problem is whether the probability density function of the radial

displacements of passive tracers reveals an algebraically decaying tail and whether the

moments of the tracer displacements exhibit super-diffusive scaling.

• Tracers dynamics will be studied with different techniques. In particular the

Lagrangian Coherent structures theory [46: Falessi et al. JPP 2015) will be applied to

study the connections between superdiffusive/convective transport and the formation

of structures in the phase space.

WP3.2: Statistical analysis of test particle transport



• Lately, there had been theory-based premises that the transport could be just convective,

with finite second moments [43: Carlevaro et al. Entropy 2016]. The finiteness of the

second moments implies, in its turn, that the Lévy flights do not step in into the

dynamics, so the relaxation process is local, i.e., fluxes at a point are defined by

gradients at the same point. Theoretically, this is a very strong statement and needs to be

verified in a simulation. This will be performed using the hierarchy of different models

used in the different WPs of this project.

• Should the results of this verification reveal the presence of far-reaching power-law tails,

then the oft-used assumption of locality will result invalidated. In this case, more

sophisticated models should be introduced, with room for non-local transport with Lévy

flights (as e.g. in ref. [47: Milovanov and Rasmussen PRE 2018). At this point (if we in

fact arrive at this point), we would like to know the exact exponent of the power-law,

and possibly also the theoretical arguments justifying this law. We expect these and

related investigations to take effect during the third year of the project.

WP3.2: Statistical analysis of test particle transport
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Viscoelastic vortical fluid motion in a strongly coupled particle system has been observed experimen-
tally. Optical tracking of particle motion in a complex plasma monolayer reveals high grain mobility and
large scale vortex flows coexistent with partial preservation of the global hexagonal lattice structure. The
transport of particles is superdiffusive and ascribed to Lévy statistics on short time scales and to memory
effects on the longer scales influenced by cooperative motion. At these longer time scales, the transport is
governed by vortex flows covering a wide spectrum of temporal and spatial scales.
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‘‘Complex plasmas’’ are obtained when microparticles
are added to a weakly ionized gas. Under certain condi-
tions, these charged microparticles can arrange themselves
in a regular lattice structure governed by electrostatic
interaction [1,2]. In certain cases, phase transition from
this crystalline to a disordered state passes through the
‘‘flow and floe’’ state characterized by islands of crystalline
order surrounded by streams of particles [3]. Systems
studied in other experiments [4–6] exhibit ordered hex-
agonal structure of the entire system, and yet the grains are
relatively mobile. References [4,5] reported subdiffusive
transport on short time scales, due to caging of the parti-
cles, and slightly superdiffusive transport on intermediate
time scales, due to the emergence and relaxation of crystal
defects. In those experiments, these motions tend towards
normal diffusion on even longer time scales, while super-
diffusive particle transport on all time scales up to the limit
given by the finite system size was reported in Ref. [6]. On
the other hand, no large scale fluidlike motion has been
observed in these systems. Laminar and turbulent fluid
flows have been observed in several complex-plasmas ex-
periments (e.g., [7]) but only in systems in the liquid or
gaseous states.

In this Letter, we report observations of a partly ordered
state in a complex plasma monolayer that allows hydro-
dynamic vortical flows. This state is observed in a narrow
range of neutral gas pressures; the monolayer freezes at
higher as well as lower pressure. The dynamics displays
elastic deformation on short temporal and spatial scales but
looks more like a viscous flow on larger scales; the essen-
tial characteristics of a viscoelastic flow. The basic idea of
viscoelasticity can be understood in terms of the Maxwell
model, where the strain ! consists of two components ! "
!e # !v. The elastic component !e responds to the stress
" through Hooke’s law " " G0!e and the viscous compo-
nent !v through the friction relation " " # _!v. From these
relations follows the differential equation "# $M _" " # _!,
where $M " #=G0 [8]. The general solution is "$t% "
$#=$M%

R1
0 _! exp$!s=$M%ds, which expresses the stress

as a linear response on the time history of the strain rate
with an exponentially decaying response function G$s% "
$#=$M% exp$!s=$M%. From the differential equation, we
find a viscous response " & # _!, for variations on time
scales '$M, and an elastic response " " G0!, for scales
($M. For oscillations at frequency !, we have a complex
Young’s modulus G)$!%, with phase angle % given by
tan% " 1=$!$%; % ' 1 corresponding to elastic and % &
&=2 to a viscous response. The latter is used in measure-
ments of viscoelastic responses [9]. This model implies a
separation between the elastic and hydrodynamic scales
given by the response time $M. The results presented in this
Letter do not exhibit such a scale separation, as shown by
the appearance of long-range memory effects in the trans-
port of dust grains. In the present context, long-range
memory means that the integral

R1
0 G$s% diverges, as will

be the case if G$s% decays algebraically rather than expo-
nentially. The origin of memory effects and elastic prop-
erties is the emergence of vortex structures on different
spatial scales, inside which some stiffness (lattice order) is
maintained.

The system studied is a large circular cluster of 600 dust
grains in a monolayer configuration. The experiment is
performed in a capacitively coupled radio-frequency dis-
charge operated in argon at a pressure *4 Pa and rf power
of 19 W. Rough estimates of plasma parameters are ne *
109 cm!3, Te * 2 eV, and Ti * Tn * 0:03 eV. Injected
monodispersive melamine-formaldehyde spheres with di-
ameter 2a " 7:2 'm become negatively charged and levi-
tate as a monolayer in the sheath above the lower electrode.
The grains are confined radially by the potential created by
a cavity of 6 cm radius machined into the lower electrode.
The particles are illuminated by a horizontal laser sheet.
30 000 images are taken by a video camera at a sampling
rate of 30 Hz and spatial resolution of 24 'm=pixel. The
database consists, therefore, of 600 time series (particle
coordinates) of 30 000 points each, sampled at time inter-
vals %t " 1=30 s. The grain kinetic temperature Td *
0:15 eV is obtained by extrapolating the grain displace-
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ments at the shortest resolved time scales. Even though
very weak rotation of the monolayer is detected, all data
analysis has been carried out in the rotating frame of
reference. The cluster diameter is 16 mm with interparticle
distance ! ! 0:6 mm. The system exhibits a hexagonal
spatial structure with some five- and sevenfold defects, in
particular, at the perimeter (Fig. 1). The pair correlation
function (inset) reveals spatial order over distances of a few
!. The particles are mobile, however, and on larger spatial
and temporal scales vortex flows can be observed, as
depicted in Fig. 2.

From the binary collision approach [10], we estimate a
momentum transfer rate in dust-dust collisions !dd "
17 s#1 while for dust-neutral collisions !nd " 6 s#1.
There is also direct evidence in the particle tracking data
which supports these estimates, since we observe of the
order of 100% change of particle momentum over one
sampling interval "t $ 1=30 s. This indicates that momen-
tum relaxation happens on scales of the order of "t or
faster. The same is confirmed by the autocorrelation func-
tion of particle velocity, which decays from unity to 0.2
within "t. Thus, there is solid evidence that there is a time
scale separation for momentum relaxation in dust-dust and
dust-neutral interactions, and we can consider our system
as ‘‘one component,’’ i.e., dominated by mutual interpar-
ticle collisions. We note, however, that for phenomena
occurring on long time scales, where we observe large
scale fluid flows, !nd introduces energy dissipation and
cannot be ignored.

Essential information about the particle dynamics can be
obtained by statistical analysis of the tracking data. The
analysis is performed on the cumulative sum #j $Pj

i$1 "#i of the azimuthal position displacement during
the sampling interval "t, defined as "#i $ ri"’i. Here ri is
the distance from the center of the cluster at a time i"t, and
"’i is the increment in the azimuthal angle from time %i#
1&"t to i"t. The choice of the quantity #j is motivated by

the fact that it is not limited by the boundary in contrast to
the radial position rj. The variogram of the process #j is
defined as V%$& $ %N # $="t&#1 PN#$="t

j$1 %#j'$="t # #j&2;
i.e., it is the variance of the probability distribution func-
tion (PDF) of azimuthal position increments !#j%$& $
#j'$="t # #j over the time lag $. An example of such a
PDF for $" 2 s is shown in Fig. 3(a). The standard devia-
tion %%$& "

!!!!!!!!!!
V%$&

p
grows with time as a power law %%$& "

$H and is plotted in Fig. 3(b). The Hurst exponent H lies in
the range between 0 and 1. Our results indicate that H !
0:84 for $ & 10 s and H ! 0:68 for $ * 10 s. This second
value persists up to the longest time scales accessible in our
study, $" 500 s. The fact that H is larger than 0.5 implies
that the transport is superdiffusive. For times $ shorter than
"30 s, the PDF of azimuthal displacements is consistent
with a stretched Gaussian distribution

P%!#; $& $ A%$& exp(#B%$&j!#j2&) (1)

and time-varying coefficients A%$& and B%$&. Figures 3(c)
and 3(d) show that these are best fitted to inverse power law
dependencies A%$& " $#'=& and B%$& " $#2' in two sepa-
rate regimes for $. From the PDF in Eq. (1), one finds the
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FIG. 1. A snapshot of the particle system showing strongly
ordered structure and the pair correlation function (inset).

FIG. 2 (color online). Motion of particles during (a) "1 s and
(b) "10 s.
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standard deviation !!"" # "#=$, leading to H $ #=$.
From Fig. 3(c), we find that #=$ % 0:84 for " & 10 s,
consistent with the value found for H from the variogram
analysis shown in Fig. 3(b). However, by plotting the
coefficient B!"" as in Fig. 3(d), we find that the exponents
$ and # depend on ", even though their ratio H $ #=$ %
0:84 is almost constant up to "# 10 s. In fact, for the short
times " & 1 s, we have # % 0:55 and $ % 0:65. These
change to # % 0:84 and $ ! 1 for " * 1 s. The fact that
$ ! 1 simply means that Eq. (1) tends to a Gaussian
distribution on time scales "> 1 s. Since the Hurst expo-
nent H % 0:84 is still larger than 0.5, the process is com-
patible with a persistent fractional Brownian motion
(FBM), a self-affine, Gaussian stochastic process which
exhibits long-range memory [11]. An ordinary Brownian
motion appears as a summation of a Gaussian white noise
process and an FBM as a summation of white noise filtered
in favor of the low frequencies. The physics of this filtering
is the emergence of cooperative hopping and vortex mo-
tions on time scales on which particles can move a distance
! or more.

The more heavy-tailed PDF observed on shorter time
scales indicates that the enhanced diffusion for " & 1 may
be governed by mechanisms other than memory.
Superdiffusion in the absence of long-range memory is
normally ascribed to Lévy processes [12], for which the
PDFs exhibit algebraic tails P!!%" # j!%j&$. Algebraic
tails are not observed here, but it is conceivable that the
longer ‘‘Lévy flights’’ are prevented by some dissipative
mechanism, e.g., neutral drag. This mechanism would then
effectively truncate the tail of the PDF. The core of the
Lévy PDF can be shown to converge to the stretched
Gaussian distribution in Eq. (1) [13].

After approximately 30 s, the nearly Gaussian PDF
develops an asymmetry, and at " % 500 s it has split up
into two large and some smaller humps, as seen from
Fig. 4(a). These humps show that the superdiffusive trans-

port observed on time scales up to 30 s is replaced by
advection of subpopulations of particles trapped in vortices
of varying size. For the results P!!%; "" presented in
Figs. 3, 4(a), 4(c), and 4(d), the study was based on a
sample of 200 particles initially grouped together in one
region of the cluster. The majority of these particles belong
to the ‘‘interior,’’ so on short time scale "< 30 s the
statistics reflects typical interior behavior. In an edge
boundary layer a few interparticle distances wide, the
crystal bonds are weaker and the grains move more or
less like in the liquid state. This fluid motion in the edge
contributes to the long-time statistics presented in Fig. 4,
but plots of individual trajectories show that the main
transport of grains occurs in the interior, so the flow picture
emerging from the statistical analysis on long time scales is
also characteristic for the dynamics in the interior of the
cluster.

Additional support for the vortex flow interpretation can
be found from the relative diffusion of the particles.
Figure 4(b) shows the evolution of the distance d between
two particles that start out as nearest neighbors (d % ! at
t $ 0). On time scales of the order of some tens of seconds,
one observes jumps in d of approximately one !, some-
times as single slip events but more often as a continuous
chain of several consecutive slips. On longer time scales,
these cooperative events form oscillatory motions over a
broad spectrum of frequencies corresponding to trapping of
the two particles in vortices of varying size up to the size of
the system. The same can be deduced from the power
spectrum of azimuthal displacements S%!f" # f&&, with
&# 2:6 for frequencies below 0.1 Hz [Fig. 4(c)]. The
relation to the Hurst exponent is H $ !&& 1"=2, giving
H % 0:8 for "> 10 s, somewhat higher than found from
the variogram in Fig. 3(b). The latter estimate is more
reliable, since it is known that the variogram underesti-
mates the true self-affinity parameter for strongly super-
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FIG. 4. (a) PDF of azimuthal position increments for time lag
" $ 500 s. (b) An example of relative diffusion (distance d
between two particles as a function of time). (c),(d) Power
spectra of azimuthal [S%!f" # f&&] and radial [Sr!f" # f&&]
displacements, with &# 2:6 and &# 1 for f < 0:01 Hz, re-
spectively.
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diffusive fractional Brownian motions [11]. The power
spectrum of radial displacements Sr!f" # f$! has !# 1
for the frequency range lower than 0.01 kHz [Fig. 4(d)].
The corresponding variogram (not shown) departs from the
variogram for the azimuthal displacement for "> 10 s and
becomes flat for "> 100 s. This is due to the limitation of
the radial displacement set by the finite cluster size. The
spectral index ! % 1 (Ha % 0) on the hydrodynamic time
scale "> 100 s corresponds to an antipersistent process at
the transition between a ‘‘noise’’ process (stationary) and
a ‘‘motion’’ (nonstationary), also called ‘‘pink noise’’ or
‘‘1=f noise’’ [11].

The idea that the grain dynamics can be described as a
viscoelastic flow derives mainly from figures of the flow
patterns such as Fig. 2 (and study of the movies [14]) and
from the results of the statistical studies presented in
Figs. 3 and 4. In Fig. 2, one observes large domains where
motion on time scales <30 s occurs along the three prin-
cipal directions (crystal surfaces) in a hexagonal crystal
structure, and yet the collective motion has the character of
rotation of this domain (a vortex). The edges of the do-
mains follow the crystal surfaces, and in their interior the
crystal order is maintained; i.e., on this time scale, grains
do not interchange positions in the lattice. Geometric con-
straints then imply a certain deformation (strain) of the
domain as it rotates, and the resulting stress corresponds to
elastic behavior. On the border between domains, develop-
ment of crystal defects allows grains to slip relative to each
other, and on these boundaries the stress depends on the
strain rate rather than the strain itself; i.e., the motion is
viscous. If there were one characteristic vortex size and
turnover time, we would have two distinct scales: elastic on
small scales and viscous on large. However, since Fig. 2, as
well as Figs. 4(a) and 4(b) indicate a wide range of vortex
sizes, it is not possible to separate these scales, and the
statistically averaged stress-strain relation may exhibit a
‘‘long-range’’ response function G!s" # s$#, with # & 1.
On time scales below a few dust-neutral relaxation times
$$1
dn , the transport seems to be governed by Lévy statistics

where the algebraic tails of the distribution are truncated,
possibly due to the effects of collisions with neutrals. On
longer time scales, the transport is superdiffusive due to
memory effects. Long-range memory means that the long
scales are more strongly represented in the spectrum, in-
dicating that vortex motions on varying scales are respon-
sible for this memory-based superdiffusion.

For a complete description of the system, we also need
to understand the mechanisms responsible for energization
of the dust grains and driving the vortical flow against the
neutral gas friction. As has been pointed out by
Zhakhovskii et al. [15], the fact that the particle charge

depends on the spatial coordinates implies that the energy
of particles in external electric fields is not conserved. This
is because the external electrostatic force is no longer
potential. The sign of the work done on a particle over a
closed path depends on the direction of motion along the
path; hence, the formation of vortical patterns is consistent
with a balance between positive energy gain over the cycle
and the frictional loss due to neutral drag, as recently
suggested in Refs. [16,17]. Therefore, one of the possible
driving mechanisms of the observed vortex formation can
be the charge inhomogeneity across the layer. Another
energy source for horizontal particle motion (especially
at the short time scales) might arise from the interaction
with the wakes which are formed under each particle by the
downward streaming ions (see, e.g., [18]). It has been
shown that the wakes can cause horizontal acceleration
of a single particle suspended under the main layer [19],
and one cannot exclude the possibility that a similar
mechanism affects particles in the layer.
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We report a theoretical result concerning the dynamics of an initially localized wave packet in quantum
nonlinear Schrödinger lattices with a disordered potential. A class of nonlinear lattices with subquadratic power
nonlinearity is considered. We show that there exists a parameter range for which an initially localized wave
packet can spread along the lattice to unlimited distances, but the phenomenon is purely quantum and is hindered
in the corresponding classical lattices. The mechanism for this spreading is moreover very peculiar and assumes
that the components of the wave field may form coupled states by tunneling under the topological barriers
caused by multiple discontinuities in the operator space. Then these coupled states thought of as quasiparticle
states can propagate to long distances on Lévy flights with a distribution of waiting times. The overall process
is subdiffusive and occurs as a competition between long-distance jumps of the quasiparticle states, on the one
hand, and long-time trapping phenomena mediated by clustering of unstable modes in wave number space, on
the other hand. The kinetic description of the transport, discussed in this work, is based on fractional-derivative
equations allowing for both (i) non-Markovianity of the spreading process as a result of attractive interaction
among the unstable modes; this interaction is then described in terms of the familiar Lennard-Jones potential;
and (ii) the effect of long-range correlations in wave number space tending to introduce fast channels for
the transport, the so-called “stripes.” We argue that the notion of stripes is key to understand the topological
constraints behind the quantum spreading, and we involve the idea of stripy ordering to obtain self-consistently
the parameters of the associated waiting-time and jump-length distributions. Finally, we predict the asymptotic
laws for quantum transport and show that the relevant parameter determining these laws is the exponent of the
power law defining the type of the nonlinearity. The results presented here shed light on the origin of Lévy flights
in quantum nonlinear lattices with disorder.

DOI: 10.1103/PhysRevE.99.052223

I. INTRODUCTION

Waves in random systems cannot readily propagate to long
distances: scattered by structural inhomogeneities on many
spatial scales, they tend to form multiple standing waves at
high disorder, and this effectively confines the wave pro-
cess within a spatially restricted domain. The phenomenon—
predicted by Anderson in 1958 [1] and extensively studied
ever since—has come to be known as the Anderson local-
ization and occurs for any type of wave process, classical or
quantum.

A continued interest in the phenomena of Anderson lo-
calization was due to the direct experimental observation of
the Anderson localization of visible light [2] and the mea-
surement of the critical exponent of scaling theory of the
localization transition [3]. More recently, there has been a
stream of literature stimulated by Pikovsky and Shepelyansky
[4,5] that sought to demonstrate that the Anderson localization
in random systems could be destroyed by a weak nonlinearity
and that the phenomenon is thresholded in that there exists a
critical strength of nonlinear interaction such that above this
strength the nonlinear field can propagate across the lattice
to infinitely long distances, and is Anderson localized despite
these nonlinearities otherwise.

Theoretically, the destruction of Anderson localization in
nonlinear lattices has been studied in the fashion of the
Gross-Pitaevskii (i.e., nonlinear Schrödinger) equation with
disordered potential [4–13]. A modified perturbation theory
with regard to the strength of the nonlinear term has been
developed [6,9], and extensive numerical simulations have
been carried out [7–9]. A subdiffusive scaling for the onset
spreading has been introduced and numerically measured
[5,7]. A nonperturbative approach to the nonlinear Anderson
problem has been developed based on topological approx-
imations, using random walks and the concept of critical
percolation on a Cayley tree [12–15]. The subject has attracted
additional interest recently in view of its extension to quantum
dynamics [16,17] and the suggestion—motivated by Fermi’s
golden rule—that the loss of localization in the quantum
domain could be not thresholded [18].

Our purpose here is to describe the delocalizing effect of
subquadratic power nonlinearity on quantum dynamics of a
lattice gas in nonlinear Schrödinger lattices with disorder. A
background for this consists in the following. (i) It has been
shown [12–15] based on a classical analysis that a power
nonlinearity of the Ginzburg-Landau type (i.e., quadratic
power nonlinearity) played a very special role in classical

2470-0045/2019/99(5)/052223(16) 052223-1 ©2019 American Physical Society
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A new basis has been found for the theory of self-organization of transport avalanches and jet zonal flows in L-
mode tokamak plasma, the so-called “plasma staircase” [Dif-Pradalier et al., Phys. Rev. E 82, 025401(R) (2010)].
The jet zonal flows are considered as a wave packet of coupled nonlinear oscillators characterized by a complex
time- and wave-number-dependent wave function; in a mean-field approximation this function is argued to obey
a discrete nonlinear Schrödinger equation with subquadratic power nonlinearity. It is shown that the subquadratic
power leads directly to a white Lévy noise, and to a Lévy fractional Fokker-Planck equation for radial transport
of test particles (via wave-particle interactions). In a self-consistent description the avalanches, which are driven
by the white Lévy noise, interact with the jet zonal flows, which form a system of semipermeable barriers to
radial transport. We argue that the plasma staircase saturates at a state of marginal stability, in whose vicinity
the avalanches undergo an ever-pursuing localization-delocalization transition. At the transition point, the event-
size distribution of the avalanches is found to be a power law wτ ("n) ∼ "n−τ , with the drop-off exponent
τ = (

√
17 + 1)/2 ≃ 2.56. This value is an exact result of the self-consistent model. The edge behavior bears

signatures enabling to associate it with the dynamics of a self-organized critical (SOC) state. At the same time
the critical exponents, pertaining to this state, are found to be inconsistent with classic models of avalanche
transport based on sand piles and their generalizations, suggesting that the coupled avalanche-jet zonal flow
system operates on different organizing principles. The results obtained have been validated in a numerical
simulation of the plasma staircase using flux-driven gyrokinetic code for L-mode Tore-Supra plasma.

DOI: 10.1103/PhysRevE.103.052218

I. INTRODUCTION

Recently, due to the high-resolution, ultrafast sweeping
reflectometry schemes employed in the fusion research, there
has been increasing attention both theoretically and experi-
mentally on the issues related with the propensity of toroidally
confined L-mode plasma to spontaneously generate microbar-
riers to radial transport as a result of plasma self-organization.
Often such barriers are found to occur in quasiregular patterns
of highly concentrated, multiple jet zonal flows interspersed
with broader regions of turbulent (typically, avalanching)
transport [1–4]. The phenomenon, illustrated numerically in
Fig. 1 with the aid of a flux-driven gyrokinetic code [5], has
come to be known as the plasma staircase and was so named
[1] after its celebrated planetary analog [6].

The physics of the plasma staircase is of interest from
both a fundamental scientific perspective and for the practical
realization of fusion energy. From a scientific perspective, the
nonlinear dynamics of the plasma staircase occupies an inter-
esting niche where microscale and mesoscale nonlinearities

can appear on an equal footing [3,4]. From a practical per-
spective, the periodic dynamical patterning due to the plasma
staircase offers a unique environment to control the avalanche
activity by fine tuning the shape and the radial positions
of the barriers [4,7]. These practical aspects are dictated by
the understanding that the avalanche transport may have a
deteriorating effect on the confinement properties of thermal
plasma and charged fusion products [8,9], while significant
losses could be detrimental. It is therefore a crucial issue to
understand the behavior of the coupled staircase-avalanching
system and the way the avalanches may be contained within
the steps of the barriers.

Although the plasma staircase is a relatively new topic
for fusion, it already enjoys an exciting history behind: The
phenomenon was discovered experimentally [2] on the Tore
Supra tokamak following its very precise theoretical pre-
diction in Ref. [1], a rare, classic circumstance when the
discovery is made au bout de sa plume, if the celebrated art
phrase due to Arago [10] is appropriate here. At the time
this paper was being written, the natural tendency of L-mode
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(a)
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FIG. 2. (a) A birds-eye view of the jet zonal flows and their
poloidal cross section (poloidal plane is marked with the letter
π ). (b) A schematic representation of the staircase wave function
ψn(t ) = ψ (n, t ). Vertical lines mimic the eigenfunctions of the linear
problem φn,m. (c) The discrete structure of jet zonal flows at the short
view and the definition of the position coordinate j. The distance
between the jets (velocity extrema) is $ and is estimated as the
Rhines length for electrostatic drift-wave turbulence, i.e., $ ∼ $Rh

(Sec. IV D). The radial position is tracked by the variable n, which
also characterizes the energy spectrum of the staircase dynamical
system under the NLSE approximation. Top: U-turn arrows illustrate
the avalanches confined between the staircase steps.

packet being broad enough in that it contains a large number
of the individual jets. The coupling between the jets is pro-
vided by their nonlinear interaction, which is mediated by the
avalanches. In a self-regulating, nonlinear plasma system, that
would be a rather efficient mechanism since the avalanches,
absorbed by the transport barriers, deliver momentum to the
poloidal flows (via the turbulent Reynolds stress), which in
turn enhances the strength of the barriers [33].

A. Description of the model

To characterize, from a most general perspective, the
nonlinear dynamics of a wave packet of coupled nonlinear
oscillators, the jet zonal flows, one might invoke the analyt-
ical scheme of the nonlinear Schrödinger equation, or NLSE
[34,35], also known as the Gross-Pitaevskii equation [36,37].
The time-dependent Gross-Pitaevskii equation describes the
dynamics of initially trapped Bose-Einstein condensates and
is shown to be an exact equation in the dilute limit [38,39].
For many-body bosonic systems, the NLSE is a mean-field
approximation where the term proportional to the probability
density |ψ |2 represents the interaction between the atoms.

Next, we argue (and confirm through results) that the self-
organization phenomena pertaining to the plasma staircase
require a modified form of NLSE in which the probability
density |ψ |2 is replaced by a subquadratic power nonlinear-
ity |ψ |2s, where 0 < s < 1 is a power exponent and tunes
the nonlinear interaction mechanism. This modified form of
NLSE has been considered in Ref. [28] for the destruction

of Anderson localization in quantum nonlinear Schrödinger
lattices with disorder.

In the nonlinear Anderson problem the subquadratic non-
linearity arises because the nonlinear interactions among the
waves might be subject to a competing nonlocal ordering
(such as, for instance, the stripy ordering [40,41], etc.), lead-
ing the constituent linear waves to interfere with themselves
[26,28]. This destructive self-interference might be either
complete, eliminating the dependence on the modulus field
(for s = 0), or partial (for 0 < s < 1), and is parametrized
by the subquadratic power 2s < 2. No competing order-
ing (no self-interference) is assumed to take place for the
quadratic power nonlinearity, with s = 1. In magnetically
confined fusion plasma, a structural disorder similar to the
disorder in the Anderson problem might occur thanks to the
presence of a low-frequency, electrostatic micro-turbulence
(e.g., Refs. [42–45], Ref. [46] for review); in the meantime,
the competing nonlocal ordering could be associated with
spontaneous occurrence of the jet zonal flows [47] or stair-
case self-organization [2–4], suggesting a similar dynamical
description. Note that the drift waves are simultaneously a
source for the disorder and the driving mechanism for the
zonal flows. With these implications in mind, we introduce
a discrete NLSE of the form

ih̄
∂ψn

∂t
= Enψn + β|ψn|2sψn + V (ψn+1 + ψn−1), (1)

where ψn = ψ (n, t ) is a complex wave function and describes
the plasma staircase as a compound system of coupled nonlin-
ear oscillators; n is the discrete coordinate and is associated
with the radial direction in a tokamak; β characterizes the
strength of nonlinearity (below for definiteness β > 0); 0 <
s < 1 absorbs the effect of competing ordering on wave-wave
interactions; V is transition matrix element; En are onsite
energies; and the total probability is normalized to unity:∑

n |ψn|2 = 1. In what follows, h̄ = 1 for simplicity; thus, the
energy coincides with the frequency. For β → 0, the stair-
case decays into a set of loosely connected eigenstates, i.e.,
(almost) noninteracting jet flows, whose eigenfunctions are
exponentially localized, the localization length being much
smaller than the spacing between the jets. Note that we have
introduced n instead of j to be the position coordinate in the
NLSE model [see Figs. 2(b) and 2(c)]. A reason for that is
that n bears a somewhat different implication in that it directly
characterizes the energy spectrum of the staircase system un-
der the NLSE approximation. We assume that the spectrum
En is discrete and dense, for the positions of the jet zonal
flows must correspond to rational values of the tokamak safety
factor. Note that the safety factor [48] is usually a function of
radius, implying that the energy spectrum En might be actually
very broad, consistently with the above assumptions.

The background theory for NLSE (1) refers to wave pro-
cesses with competition between dispersion, randomness,
and nonlinearity (e.g., Refs. [49–55]). A large body of
work promoting a reduced equation with quadratic power
nonlinearity (s = 1) is documented in Refs. [56–65]. A gener-
alization to subquadratic powers, with s < 1, was formulated
in Refs. [26–28]. Superquadratic nonlinearities have been
considered in Refs. [25–27]. Formally, the model in Eq. (1)
coincides with the NLSE model introduced in Ref. [28], but
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We formulate the problem of confined Lévy flight on a comb. The comb represents a sawtoothlike potential
field V (x ), with the asymmetric teeth favoring net transport in a preferred direction. The shape effect is modeled
as a power-law dependence V (x ) ∝ |!x|n within the sawtooth period, followed by an abrupt drop-off to zero,
after which the initial power-law dependence is reset. It is found that the Lévy flights will be confined in the sense
of generalized central limit theorem if (i) the spacing between the teeth is sufficiently broad, and (ii) n > 4 − µ,
where µ is the fractal dimension of the flights. In particular, for the Cauchy flights (µ = 1), n > 3. The study
is motivated by recent observations of localization-delocalization of transport avalanches in banded flows in the
Tore Supra tokamak and is intended to devise a theory basis to explain the observed phenomenology.

DOI: 10.1103/PhysRevE.98.022208

I. INTRODUCTION

In recent investigations of zonal flow phenomena in magne-
tized plasma by means of high-resolution ultrafast-sweeping
X-mode reflectometry in the Tore Supra tokamak, spontaneous
flow patterning into a quasiregular sequence of strong and
lasting jets interspersed with broader regions of turbulent
(typically, avalanching) transport has been observed [1–3]. The
phenomenon was dubbed “plasma staircase” by analogy with
its notorious planetary analog [4]. The plasma staircase has
been referred to as an important self-organization phenomenon
of the out-of-equilibrium plasma, which had pronounced effect
on radial transport and the quality of confinement. Detailed
analyses (both experimental and numerical based on gyroki-
netic calculations) have identified the plasma staircase as a
weakly collisional, mesoscale [5] dynamical structure near
the state of marginal stability of the low confinement mode
plasma [2,3].

The comprehension of the plasma staircase [1] has both fun-
damental and practical significance. From a scientific perspec-
tive, the plasma staircase represents a fascinating dynamical
system in which kinetic and fluid nonlinearities may operate
on an equal footing. In the practical perspective, the plasma
staircase raises the important problem of avalanche-zonal flow
interaction [2,3], which may be key to control the dynamic
confinement conditions in magnetic fusion devices, tokamaks
and stellarators. On top of this, the fact that a significant
portion, if not a vast majority, of avalanches have been confined
within the staircase steps [3] is by itself a challenge, since the
plasma avalanches being spatially extended transport phenom-
ena behave dynamically nonlocally, and their “localization”
within a transport barrier is not at all obvious. Mathematically,
this revives the long-standing problem of the confined Lévy
flight, which has attracted attention in the literature previously
(e.g., Refs. [6–11]).

In this paper, we adapt the general problem of confined Lévy
flight [7,9] for staircase physics and show that the transport

avalanches may be localized, if (i) the staircase jets are spatially
separated, as they prove to be [2,3], and (ii) at each step
of the staircase the gradients are sharp enough in that the
potential function grows faster with distance than a certain
critical dependence (cubic when modeled by a power-law).
If the growth is slower than this, then the avalanches are not
localized in that there is an important probability of finding
the Lévy flyer outside the transport barrier. More so, we find
that in the confinement domain there may occur at least three
different types of avalanches, which we call, respectively, white
swans, black swans [12], and dragon kings [13], and that the
white swans may “mutate” into the black swan species past
the intermediate gray-swan family found at the point of cubic
dependence. This gives rise to some features of bifurcation,
which might be identifiable in the experiment. This observation
opens a new perspective on “smart” plasma diagnostics in
tokamaks using plasma self-organization [1–3].

The paper is organized as follows. In Sec. II, we introduce
an idealized transport model, which we arguably name Lévy
flights on a comb, and which is motivated by the challenges
discussed above. The model, which is derived in Sec. II B using
the idea of transition probability in reciprocal space [14], is
intended to mirror the observed behaviors [1–3] and, most
importantly, provide a practical criterion for the phenomena
of localization-delocalization of avalanches in the presence
of zonal flows. We discuss the various aspects of this model
in Secs. III and IV, which focus on, respectively, space scale
separation issues and the size distribution of avalanches. The
latter is shown to be inverse power-law for both the white and
black swans, but with different drop-off exponents, making it
possible to differentiate between the species. We conclude the
paper in Sec. V with a few remarks.

II. THE MODEL

We represent the plasma staircase as a periodic lattice, a
comb, looking along the coordinate x; the latter represents
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by the turbulence take energy from the turbulence, meaning
that their driving mechanism is diminished, and they may be
decaying due to classical or neoclassical collisional damping
(e.g., Refs. [16,50]). The process opens a possibility that some
avalanches escape the confinement domain during the barrier
depression periods, giving rise to sporadic bursts of large-scale
transport well above the staircase’s parapet. This type of
occasionally strong transport events being virtually insensitive
to the underlying flow and stress organization has been found
in the GYSELA simulations [2,3], and their statistical weight
has been assessed to be about a percentile of all avalanche
events observed across the staircase.

If one is a traditionalist, and wants to remain with the
Fokker-Planck model in Eqs. (1) and (2), then one might readily
assess the statistical case of unconfined avalanches as follows.
In the basic kinetic equations, one neglects both the Gaussian
and the potential force terms, as well as the sink term Ŝ−[f (x)],
and only keeps the nonstationary term against the Lévy term.
The net result is that (i) there is no steady state solution,
contrary to the confined transport case; and (ii) the probability
density, which is time dependent, behaves asymptotically as
a power-law f (x, t ) ∼ Kµt/x1+µ. Due to this property, the
mean squared displacement diverges, i.e., ⟨x2(t )⟩ → +∞,
which is typical for free Lévy flights. In view of this divergence,
the size distribution of unconfined avalanches is obtained as the
corresponding jump length distribution [23]. The latter is given
by Eq. (15), yielding, for !s ≫ ℓ, !s ≫

√
D/q,

w(!s) ∝ !s−(1+µ). (32)

The scaling in Eq. (32) is confirmed by tuning n to its border-
line value n = 3 in w(!s) ∝ !s−(n+µ−2), as is intimated by
Eq. (29) above.

Let us christen our avalanches. Inspired by the mathematical
elegance of the confined Lévy flight, we baptize the avalanches
caught in-between the staircase steps white swans. The term
is intended to contrast the other population of bursty transport
events, the black swans, which are the avalanches escaping the
confinement system during the low barrier phase. The name
black swan is borrowed from the Taleb’s book [12]; where,
it has been introduced to describe an unexpected catastrophic
event catching us off-guard. Note that the size distributions of
the power-law type appear for both the white and black swans,
but with different drop-off exponents, so that for n > 3 the
black-swan distribution is always flatter (in its habitat) than
the corresponding white-swan distribution (see Fig. 2).

The occurrence of the black-swan family gives rise to a
characteristic “bump” in the w(!s) dependence, which is
located around !s ∼ ". Given the space scale separation
condition " ≫

√
D/q, the position of this bump is well

beyond the exponential core region (see Fig. 2). One sees
that the resulting w(!s) dependence, which embraces both
the white- and black-swan populations, will be bimodal in that
it has a second maximum near !s ∼ ".

Note, also, that the white swans go extinct beyond the
staircase spacing distance ∼", that is, the areas of the white-
and black-swan dominance are essentially different (except for
the narrow overlap region around ∼"). This finding is peculiar
and says the probabilities of the black-swan events cannot
be predicted by interpolating the white-swan counterpart (if
it exists) to longer sizes.

FIG. 2. The coexistence between the white- and black-swan
families of avalanches for n > 3. The occurrence of the black-swan
family gives rise to a characteristic “bump” in the w(!s ) dependence
around !s ∼ ", lying far off the exponential core region (i.e., the
property of bimodelity). The dragon-king avalanches being singular
transport events are shown as a fat dot at the upper-right corner
dominating the scene.

The respective drop-off exponents for the white and black
swans would only coincide for the borderline case n = 3,
for which all the swans stick together to form one single
family, with the unique size distribution w(!s) ∝ !s−(1+µ).
Arguably, one might refer to this borderline case as gray swans,
as they serve as the missing bond between the two main species,
the white and black swans. Because µ < 2, the gray swans
correspond to nonlocalized avalanches.

For n < 3 (but still larger than 2, see Sec. II), we expect
the white swans to completely change their color and
“mutate” (past the intermediate gray-swan phase) into one
single family of the black-swan type populating the entire
staircase (see Fig. 3), with the unique size distribution
w(!s) ∝ !s−(n+µ−2). The latter distribution turns out to
be flatter than the jump length distribution for free Lévy
flights as of Eq. (32) above (this is because the n value is
now smaller than 3), implying that the asymmetric-teeth
effect enhancing the transport in radial direction has become

FIG. 3. Same situation, but for 2 < n < 3. The regime with n = 3
is the borderline case, for which the white-swan family “mutates”
into one extended black-swan family past the gray-swan species. The
bimodality of the w(!s ) dependence (see Fig. 2 above) is naturally
lost in this case.
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a b s t r a c t 
A new model of self-organized criticality (SOC) is described which differs from ordinary sand-pile SOC 
models in that it uses electrically charged particles of different kinds to propagate activities and to gen- 
erate the critical state. The model, arguably called the e-pile model (as an alternative to sand-pile , with 
“e-” standing for “electric charge”), is motivated by the problem of dielectric relaxation in self-asembling 
random lattices with disorder under the action of electrostatic forces, but in principle it may be applied 
to different SOC processes with the random injection scheme and charitable lattice-redistribution rule. 
We show that the critical state is that of self-evolving random percolation clusters at the edge of per- 
colation and is also different from known “self-organized” versions of the percolation problem based on 
the directed percolation. A set of critical exponents is obtained based on the random walks, using the 
Kramers-Kronig relation and the formalism of frequency-dependent complex conductivity. The relaxation 
of a supercritical system to SOC is shown to obey the Mittag-Leffler pattern and fractional relaxation 
equation, with a broad distribution of durations of relaxation events. A peculiar feature of the e-pile sys- 
tem is that it is characterized by an intrinsic bias disregarding a vast majority of incipient relaxation 
events (by killing them “in their egg”), while it also favors other events that may, then, grow into ex- 
tremely large sizes. We use this observation to explain the phenomenon of the “black swan,” by which 
one means a family of rare, large events, whose sudden occurrence is very difficult to predict, despite 
the important impact this type of event may have over the entire system. The event-size distribution of 
the black swans is found to be a power law, with the drop-off exponent being sensitive to the complex- 
ity features of the underlying percolation clusters. On the basis of this observation, we show that the 
black swans are less probable in more complex environments, and we use this argument to explain why 
driven, dissipative systems would develop complex structures as a result of dynamical evolution. The e- 
pile model reveals the upper critical dimension d c = 6 for which a crossover to mean-field SOC is found. 
In six and higher dimensions, the probability density to observe a black swan of a given size behaves 
as the inverse cube of the size. Below d c the decay is always slower than the inverse-cube and is flatter 
at lower dimensions. The implications of the mean-field law in country risk assessment, business, and 
finance are discussed. Finally, we show that the occurrence of the power-law tails is limited to the rate 
of the driving, and that for too high a rate a different branch of extreme events may result, with the 
defining features enabling to associate this branch with the phenomenon of dragon kings. 

© 2021 Elsevier Ltd. All rights reserved. 
1. Introduction 

“Black swan” [1] is an art name for an abrupt, singular, large- 
magnitude event, whose sudden occurrence is very difficult to pre- 
dict, despite the potentially disastrous effect it may imply. The 
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phenomenon is of interest from both a fundamental scientific per- 
spective and for the practical implementation of hazard assess- 
ment. From a scientific perspective, large-magnitude events attract 
considerable attention because they reveal the underlying, often 
hidden, organizing principles behind the nonlinear dynamics of 
systems with many interacting degrees of freedom [2–7] . From a 
practical perspective, the disproportional role of high-profile, sin- 
gular events poses a challenge to our civilization, with important 
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