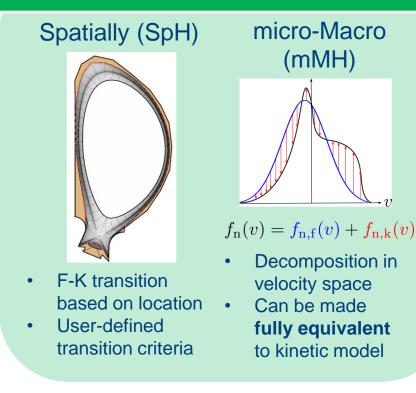
KU LEUVEN

Planned contributions of KUL to TSVV5 – Neutral Gas Dynamics in the Edge

W. Dekeyser, B. Mortier, W. Van Uytven, S. Carli, V. Maes, M. Blommaert, <u>G. Samaey</u>, M. Baelmans



Main focus: development hierarchy of neutral models

Hybrid fluid-kinetic models

Advanced fluid neutral models

- Efficient (direct) coupling to plasma equations, no MC noise
- Basis for hybrid methods
- Good accuracy in highly collisional regimes

Kinetic model

- Most complete physical description
- Flexibility w.r.t. geometry, collisional processes, sources, boundary conditions,...
- Very expensive in highly collisional regimes

Model accuracy

Computational efficiency

CPU × 1/10?

Spatially hybrid approach

- Planned work (WD, WVU, MB, TB)
 - Further development of Advanced Fluid Neutral AFN models (n-n collisions, drifts, mixed H/D/T plasmas)
 - Optimization of SpH parameters, combination with (evaporation/)condensation approach
 - Application cases: ITER + DEMO, slab + realistic geometry
 - Investigation of fluid/hybrid approach for molecules
- First milestones / deliverables

	Description	Target date
D2.a, 1	AFN with drifts and n-n collisions	6/2022
D2.a, 2	AFN for H/D/T mixed plasmas	6/2023
D2.a, 3	Optimization SpH interfacing scheme	6/2024
D5.c, 1	Application/assessment of FKH for slab DEMO	6/2023
D5.c, 2	Application/assessment of FKH for realistic DEMO	6/2024

KU LEU

micro-Macro hybrid approach and KDMC

- Planned work (BM, WD, VM, GS; NH)
 - mMH:
 - implementation of projection techniques + combination with SpH approach to reduce cancellation errors;
 - rejection sampling to eliminate modeling error
 - KDMC:
 - bias reduction through use of multilevel Monte Carlo
 - implementation of basic scheme + estimators in EIRENE
 - Performance assessment for ITER + DEMO
- First milestones / deliverables

	Description	Target date
D2.b, 1	Assessment of techniques for error reduction (bias, cancellation, modeling)	6/2022
D2.b, 2	Implementation basic KDMC scheme in EIRENE	6/2023
D2.b, 3	Performance assessment FKH schemes	12/2023

KU LEUVE

Code sensitivities through Algorithmic Differentiation

- Planned work (WD, SC, MB, TB)
 - Interfacing of EIRENE with TAPENADE tool
 - Application in forward and adjoint modes
 - Testing + identification of bottlenecks

• First milestones / deliverables

	Description	Target date
D4.e, 1	Interfacing EIRENE with Tapenade, forward mode	3/2022
D4.e, 2	Interfacing EIRENE with Tapenade, backward mode	3/2023
D4.e, 3	Assessment bottlenecks for use AD with EIRENE(-CFD)	3/2024

Cooperation with ACH

- Link with IM-hub:
 - Algorithmic improvement; optimal particle tracing schemes for 'regular' and hybrid simulations