

Status of Yacora for atomic and molecular hydrogen

D. Wünderlich and U. Fantz

Population models for fusion edge plasmas.

Population models

- Predict population densities in dependence of plasma parameters (T_e, n_e, ground state densities).
- Main field of application: plasma diagnostics.

Collisional radiative models

- Balance all relevant exciting and de-exciting reactions.
- \Rightarrow Needed: extensive data base of reaction probabilities.
- \Rightarrow Drastically increased complexity for molecules (vibrational and rotational excitation).

Error bar of model results directly correlates with the quality of the used input data.

Yacora for H in different plasma regimes.

Yacora collisional radiative model for the hydrogen atom:

- In principle a complete set of input parameters, but some are base don simple assumptions.
- Some improvements were done in the last years.

Excitation of atomic hydrogen...

Huge number of free parameters \Rightarrow Evaluation needs a lot of time and experience

Input data for the different coupling channels.

Excitation channel		Initial model (improved Sawada)	Yacora now
н	Direct excitation	Johnson formula & Vriens 1980	Wünderlich 2009
H⁺	Recombination	Inverse ionization / Based on Gaunt factor	Inverse ionization / Based on Gaunt factor
H ₂	Dissociative excitation	Measured emissivties, scaled	Measured emissivties, scaled
H ₂ ⁺	Dissociative recombination	Janev 1987, scaled.	Janev 2003
H ₃ ⁺	Dissociative recombination	Not included	Janev 2003
H [−] with H ⁺	Mutual neutralization	Janev 1987	Stenrup 2009
H^- with H_2^+	Mutual neutralization	Not included	Janev 2003, Eerden 1995

Highlights from the model for H.

The performed improvements of the input data resulted in a very good agreement of model results with experiments.

ECR discharge:

Yacora for H₂.

Excitation channel		Initial model (improved Sawada)	Yacora now
$H_2(X^1) \rightarrow H_2^*$	Direct excitation	Miles 1971	Fursa / Scarlett (MCCC)
$H_2^* \rightarrow H_2^+$	Ionization	scaled results for H	Wünderlich 2011
$H_2(n=2) \rightarrow H_2(n=2)$	Excitation of excited states	Zygelman (for hydrogen-like ions)	Fursa / Scarlett (MCCC)
$H_2(n=2) \rightarrow H_2(n=3)$	Excitation of excited states	scaled results for H	Fursa / Scarlett (MCCC)
$H_2(n>1) \rightarrow H_2(n>3)$	Excitation of excited states	scaled results for H	scaled results for H
$H_2(a^3 \text{ or } c^3)+H_2 \rightarrow 2H_2$	Quenching of triplet states	Not included	Wedding 1988
$H_2^*+H^+\rightarrow H_2^++H$	Charge exchange with H ⁺	Not included	Janev 2004
H ₂ *+e ⁻ →H ⁻ +H	Dissociative attachment	Not included	Hiskes 1996, Datskos 1997

Additionally:

- Available are ro-vibrationally resolved Corona models for Fulcher, Lyman, Werner, $a^3 \rightarrow b^3$ continuum. Partially for D₂ also.
- Planned next steps: use MCCC cross sections for fully vibrationally resolved model. H₂ and D₂.

Highlight from the model for H₂.

