

PWIE SP-B.1 Kickoff Meeting Proposed Plans for tasks in 2021

Christian Cupak, Martina Fellinger, Paul Szabo and Friedrich Aumayr

TU Wien (Fusion@ÖAW)

and

Daniel Primetzhofer et al.

Uppsala University (VR)

Kickoff Meeting, June 9th, 2021

Official Task Description

Eurofusion PWIE SP-B.1 (Physics of erosion and deposition)

2021/01/01 - 2022/12/31

Our tasks to be performed:

- Determine the sputtering properties, including angular distributions of sputtered particles, of W model systems with varying morphologies and re-deposited W layers
- laboratory experiments and analyses (ÖAW)

Our deliverables (D4):

Effective <u>sputtering yields of W</u> model systems (including <u>angular distributions</u> of sputtered particles) and <u>re-deposited W</u> layers, following exposure to controlled <u>D and impurity ion</u> beams (ÖAW)

cupak@iap.tuwien.ac.at Slide 2

Experimental Setup

A: Volume to create gas mix (i.e. Ar + D_2)

B: Ion source + WF (0.2 to 5keV ions)

C: QCM (target) -> sputter yields

D: QCM (catcher) -> angular distribution

E: W-platelet (Mateck) -> enables in-situ W sputter deposition on target QCM

G: D₂ bottle for residual gas pressure tuning (10⁻⁸ up to 10⁻⁴ mbar)

F: QMS for residual gas analysis

QCM (Quartz Crystal Microbalance)

- Utilisable for both erosion or deposition
- Resonance frequency changes with mass loss/gain [1]
- Determines mass changes down to 10⁻⁴ W monolayers/s [2]
- Temperature compensated (3rd mode) [2]

$$\frac{\Delta m}{m_Q} = \frac{\Delta d}{d_Q} = -\frac{\Delta f}{f_Q} \qquad [6]$$

Current Project Plan

1) Create & characterise re-deposited W layers

- On flat W QCM crystal and/or Si Wafer platelet
- Deposition of 1-10 nm W in setup, D₂ residual gas pressure of 10⁻⁶ mbar to create W layer with lower density to introduce significant difference between classic and redeposited W layer
- IBA (Uppsala University, VR) to characterise thin layer (parallel to step 2 below)

W redep.

W

2) Reference experiments on twin QCM sample (flat W, no redeposited layer)

- Sputter yields $D_2^{1+} \rightarrow W$, $Ar^{1+} \rightarrow W$; 2keV; under various inc. angle
- Angular distribution of sputtered W atoms (60° Ar¹⁺ -> W case)

3) Experiments with re-deposited layer on QCM sample

- Deposition of 1-10nm W in setup, D₂ residual gas pressure of 10⁻⁶ mbar to create W layer with less density
- Sputter yields D₂¹⁺-> W, Ar¹⁺-> W; 2keV; under various inc. angle
- Angular distribution of sputtered W atoms (60° Ar¹⁺ -> W case)

For all: AFM investigation priori/posteriori irradiation

cupak@iap.tuwien.ac.at Slide 4

Current Project Plan

Time plan:

Project milestone	Estimated time	Status
Setup calibrations and upgrades	3 weeks	Almost done
1) Layer characterisation (ÖAW + VR)	3-4 weeks	Open
2) Reference experiments (ÖAW)	2 weeks	Open
3) Experiments on re-dep. layers (ÖAW)	2 weeks	Open
Data analysis & evaluation (ÖAW + VR)	3 weeks	Open

Planned start of experiments: Calendar week 26-30 (depends on current exp. campaign progress)

Project on track, no delays expected so far

Our SP-D task will further support this work with focus on numerical simulations (SDTrimSP-3D, SPRAY)

cupak@iap.tuwien.ac.at Slide 5