

WPPRD-LMD 2021: PoliTo contribution

G. F. Nallo¹, F. Subba¹, R. Zanino¹

With contributions by: A. Carpignano¹, G. Mazzitelli², M. Moscheni¹, N. Pedroni¹, A. C. Uggenti¹

¹NEMO group, Dipartimento Energia, Politecnico di Torino, Italy ²ENEA, Frascati, Italy

giuseppefrancesco.nallo@polito.it

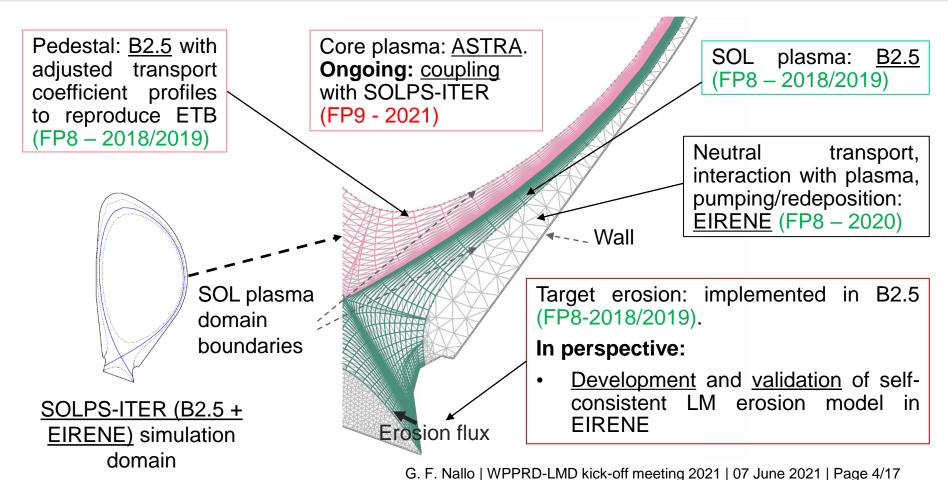
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

Aim of the work

- Overview of the modelling strategy
- FP8 activities completed in 2020
- Work program and status of 2021 activities
- Perspective for 2022 (and beyond)

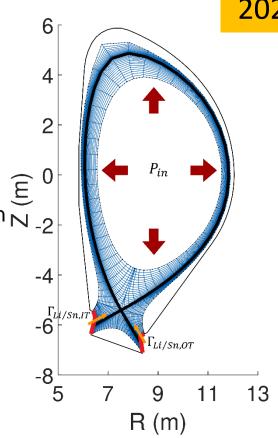
Aim of the work



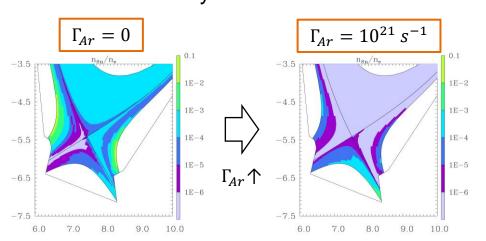
- LM erosion →
 - beneficial vapor shielding of the target ...
 - ... but possibly excessive core plasma cooling/dilution
- Target, SOL and core plasma must all be included in a selfconsistent model to:
 - Analyze LMD experiments in tokamaks (→ interpretation, model calibration and validation)
 - Assess compatibility with EU DEMO plasma scenario and support LMD design

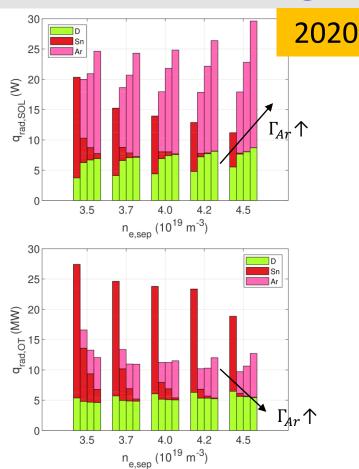
Aim: to develop the necessary knowledge and tools to simulate the EU DEMO plasma in the presence of an LMD using a state-of-the-art edge plasma code (SOLPS-ITER) coupled to a core transport code (ASTRA).

Overview of modelling strategy


Overview of FP8 activities

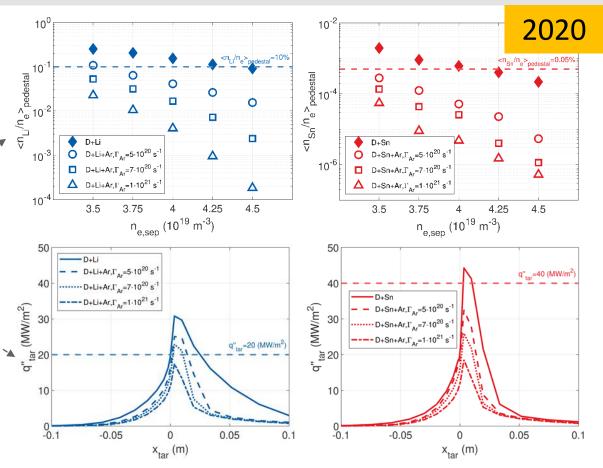
SOLPS-ITER simulations (I)


 Simulations for EU DEMO with CPS-based LMD (Li/Sn), including self-consistent target erosion (fluid model for neutrals) and Ar seeding.


- Modeling refinements:
 - Target erosion model:
 - Considered most recent ENEA PFC design for Sn —
 - Included thermal sputtering for Li
 - Considered prompt redeposition of evaporated particles
 - Ar seeding:
 - Full set of ionization states for Ar in the place of simplified bundled charge → more accurate calculation of radiated power
 - Completed parametric scans

SOLPS-ITER simulations (II) - Ar seeding

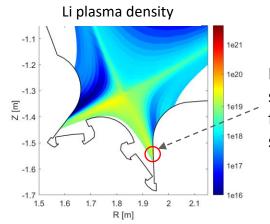
- Here show results for Sn (same study was performed for Li)
- Ar replaces Sn as SOL radiator →
 - LMD no longer operates in vapor shielding regime
 - Sn concentration in edge and pedestal dramatically reduced



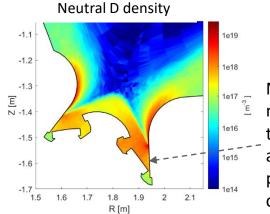
G. F. Nallo | WPPRD-LMD kick-off meeting 2021 | 07 June 2021 | Page 7/17

SOLPS-ITER simulations (III): Li vs. Sn

- Operational window significantly widened thanks to Ar seeding, for both Li and Sn, in terms of:
 - Core plasma contamination (but need more detailed assessment → couple to ASTRA in FP9)
 - Target peak heat flux (to be compared to power handling capability of different LMD designs)


G. F. Nallo | WPPRD-LMD kick-off meeting 2021 | 07 June 2021 | Page 8/17

Simulations with kinetic neutrals

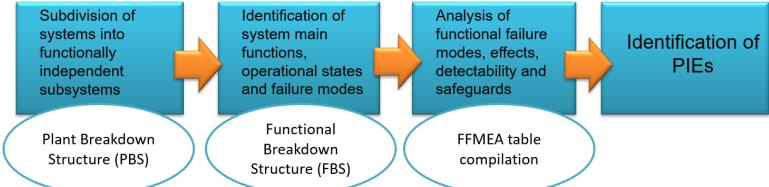


2020*

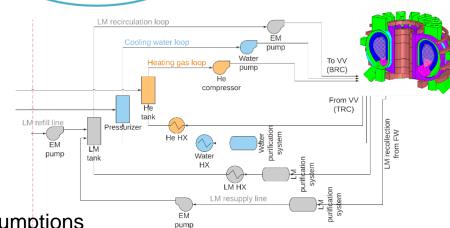
- Kinetic model for the neutral species (EIRENE) needed to:
 - Extend neutral domain up to physical wall → assess effectiveness of baffling (for Li)
 - Account for pumping and condensation
- EU DEMO simulations:
 - Start from existing simulations performed by F. Subba in WPPMI [IDM report 2N3L2S] with D+He+Ar and kinetic neutrals
 - Add Li/Sn to the simulations, including source from target erosion and sink from pumping and condensation on FW
 - Generate new meshes and repeat simulations for increased divertor closure
 - Simulations are currently running...
- DTT simulations (smaller machine → faster convergence) to test the modelling strategy

Li emission simulated by puffing from the target with specified flow rate

Mesh for kinetic neutrals extends up to physical wall → account for pumping / condensation


^{*}Activity completed in 2021

Safety analysis (I) - Methodology


FFMEA methodology

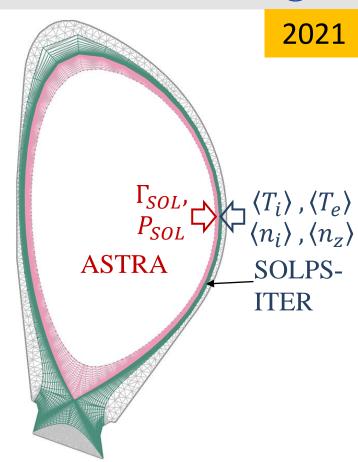
2020

Setup of the LMD safety analysis

- Analysis in normal operation conditions;
- Consider only internal events;
- Battery limits included:
 - in-vessel components
 - LM recirculation / purification loop
 - LM cooling/heating systems
- Where design information is incomplete, assumptions on main components (see fig.)

G. F. Nallo | WPPRD-LMD kick-off meeting 2021 | 07 June 2021 | Page 10/17

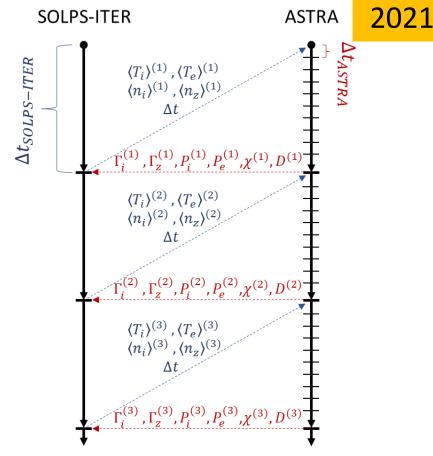
Safety analysis (II) – Conclusions


- Functional safety analysis performed on an LM divertor (preliminary design)
 - Implementation of proposed methodology → better understanding of the analysed system safety issues
 - List of PIEs and description of possible consequences → input for deterministic analysis
- Safety analysis results can support design development
 - Some accidental scenarios (e.g. water ingress in VV) are more severe in case Li is used instead of Sn
 - System modularity limits the damage in case of accidental scenario but increases the frequency

Work program for 2021-2022

ASTRA + SOLPS-ITER coupling (I)

- Aim: to assess the effect of impurities on core plasma performance and the feedback on the power entering the SOL → integrated EU DEMO scenario with liquid Sn divertor
- Strategy: SOLPS-ITER up to pedestal region, ASTRA for core region
- Work program for 2021:
 - 1. Identification and implementation of coupling scheme between ASTRA and SOLPS-ITER (collaboration with ASTRA developers Dr. E. Fable / IPP Garching)
 - 2. Extensive testing



ASTRA + SOLPS-ITER coupling (II)

 Coupling strategy: synchronized time advance with data exchange on shared memory location (time as iteration variable)

- SOLPS: flux-averaged temperatures and densities.
- ASTRA: power and particle fluxes + transport coefficients for the pedestal region
- Implementation: C routine using semaphores (caller)
 - Called by SOLPS-ITER via ad-hoc Fortran interface
 - Calls ASTRA as a library, regulates semaphores

- Following developments in 2021, run integrated simulations to characterize an EU DEMO scenario with liquid Sn divertor:
 - Interact with other WPs to update input data (e.g. vessel shape, fueling and pumping strategy, etc.)
 - Rely on previous experience from COREDIV simulations
 - Assess core plasma compatibility and closed loop requirements
- Improve erosion/deposition model in EIRENE:
 - Target emission profile consistent with the impinging power/particle fluxes (so far, done in B2.5 fluid neutral model but not in EIRENE kinetic model)
 - Species-specific pump for Sn on FW → simulate condensation

Perspective beyond 2022

Support to experimental campaigns

Context:

- Experiments in AUG (module insertion) and later in COMPASS-U and DTT (full divertor) are foreseen in FP9
- Integrated plasma simulations can support design and interpretation of experiments requires

Proposed activities:

 Apply SOLPS-ITER + ASTRA to support the design and interpretation of the experimental campaigns foreseen in AUG, COMPASS-U and DTT

Thanks for your kind attention.

Comments or Questions?