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& COREDIV ()

COREDIV = 1D transport in the core self-consistently coupled to 2D model in
the SOL

Aims at steady state description of plasmas with impurities

Adva ntages- -Simplified core-SOL-divertor simulator (COREDIV): |
» Self-consistent modeling core and Core: simplified Fluxes ™ o, o
(Hgg(y2)) heat and
SOL particle (impurity+ il
!mporjca!nt fqr sim'ula’Fior.l of the mzrdizr;i)r;;asnsrfgrt Boundary = ;
impurities either intrinsic sources: C, W, ’ ’

equilibrium

Sn, Li, or gas puffed: Ne, Ar, Kr, Li...

* Included atomic processes: ionization, recombination, excitation, charge exchange
e Solved each ionization stage of the impurities
* Intrinsic and seeded impurities — gas puff at different positions

e Faster code: 1case - 12h

Drawbacks:

* SOL slab geometry —profiles do not always correspond to the observed ones. One
should rely on volumetric entities.
* Semianalytical model of neutrals -> not valid in detached conditions
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Modelling of the plasma transport in the SOL region with use of a numerical model based on
multifluid Braginskii-like equations of the plasma transport in two-dimensional geometry
with classical transport along field lines and diffusive transport across field lines. Simulations
of plasma for any number of impurity species and all associated ionization stages. The TECXY
code applies atomic processes like ionization, recombination, excitation, charge exchange,
prompt re-deposition, sputtering, recycling or the liquid targets evaporation.

Simulations with the TECXY code could be applied for:

Investigations of divertor plasma physics: estimation of the particle and heat fluxes to
the divertor plates, plate temperatures, or.

Modelling of the power mitigation for advanced divertor configurations (ADCs).
Simulations of the liquid metal divertor impact on the SOL plasma.

Study of the onset of the plasma detachment.

Determination of the radiation spatial distribution for main plasma and plasma
impurities for spectral analysis.

Exploration of a tokamak operation parameter space related to geometry, impurities,
estimation of radiative power exhaust by certain impurity mixtures and their
concentration and required seeding rates.
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Liquid metal impurity source model
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The same impurity source

model is implemented in both
codes.

Scrape-off Layer

Vap. shielding

Upgrades are first tested in
COREDIV (more robust) and
then impemented in TECXY

YEurf

TEurf»rbap

Sputtering model

Evaporation model
Collisional and thermal component
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2020/2021 modelling 7®)

* In 2020 TECXY modeling was focused on comparing lithium and tin divertors
« Scans of the key plasma parameters (e.9. 1, s below )
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Power load on the outer target liquid vs the
outer midplane separatric density in the case of
maximized volume power losses.

Fraction of the total power losses for Li, Sn and pure
plasma

The cross field heat and particle transport is here fixed in order to give an e-folding decay length of the power flow on the outer
equatorial plane 4, = 3mm. (1; = 1mm from scaling laws). Both d,, and T, are kept inside limits, 0.2-12 cm and 0-700 C.

Each point required tuning of all the paramteres on both targets to maximize the volume power losses, compatible with the code
steadiness (i.e. avoding too strong evaporation and T¢ st ¢ > 2.5€V)
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2022/2021 modelling ®)
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https://link.springer.com/journal/10894

Divertor design params

TECXY, Pgo,=190MW
dW = Smm, TO = 200°C
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Max surface temp. stays above the melting point.
(no thermal sputtering included)

Ar puffing significantly reduces the peak power
load on both targets and the Surface
temperature.
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Divertor design: tin thermal sputtering
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increased with parameter ¢

Tin thermal sputtering data only for light particles D

and He. Only available to 400C.
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Tin thermal sputtering has siginificant influence on the divertor conditions such as Te, Pipgq, Tsurf
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* For given ENEA design parameters the LM surface temperature is
significantly reduced.

 COREDIV and TECXY modeling is ongoing. Inclusion of tin thermal
sputtering may affect the limits imposed on the LMD divertor design and
needs further investigation. Electron temperatures reached at the plate
indicate semi-detached and detached conditions -> need for SOLPS
modelling
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Prospectives for 2021 (®)

* Modelling of DEMO with the divertor design.

« Analysis of the DEMO parameter space in which tin remains liquid
and evaporation stays negligible.

* Investigation of the influence of sputtering on the conditions in the
divertor region.
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Thank you!
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