



### **PWIE, SP B.3 NCSRD** activities in 2021: analysis of reference and plasma-exposed samples – plans and capabilities

<u>D. Mergia</u>, A. Lagoyannis, P. Tsavalas, M. Axiotis NCSR "Demokritos" (NCSRD)





This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

# **Experimental capabilities for surface analysis of plasma facing materials (1)**

#### Ion Beam Analysis

- Rutherford Backscattering Spectroscopy (RBS)
- Nuclear Reaction Analysis (NRA)
- Particle Induced X-ray/Gamma-ray Emission (PIXE/PIGE) spectroscopy
- Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) from early 2022
- Milli- and micro-beam

New ion sources (TORVIS & SNICS II) to be installed in early 2022 providing the ability to use ions up to lodine





Contact: Tassos Lagoyannis, lagoya@inp.demokritos.gr

## **Experimental capabilities for surface analysis of plasma facing materials (2)**



#### **µ-beam Facility**

#### Spatial resolution 1.2 $\mu m$ x 2 $\mu m$

#### Chamber's features:

- Load lock chamber
- 3 axis motorized sample holder
- Rotatable target holder
- Heating / Cooling
- Long range microscope for precision
- CCD camera for sample Monitoring

#### Detectors:

- PIXE low energy Si(Li) detector at 45°
- PIGE HPGe detector at 45°
- STIM detector at 0°
- RBS SSB detector at 170°
- NRA SSB detector at 150°





# Experimental capabilities for surface analysis of plasma facing materials (3)



- X-ray Fluorescence Spectroscopy (XRF)
  - Elemental analysis for Z>11
- X-ray diffraction/reflectivity (XRD/XRR)
  - Normal and incidence angle
  - High speed linear position sensitive detector
  - In-situ studies from LN2 up to 1500°C (XRD) or up to 800 °C (XRR)
- Scanning Electron Microscopy (SEM) with EDX spectroscopy
  - <1 nm resolution 0.2-30 kV (new FEG-SEM microscope purchase under way)</p>
- Transmission Electron Microscopy (TEM)
- Atomic Force Microscopy (AFM)
- X-ray Photoelectron Spectroscopy (XPS)
- Mechanical properties using depth-sensing nano- & micro-indentation





XRD/XRR - furnace setup



Depth Sensing Indenter

#### **Be Tiles from JET tokamak: Erosion** Combined NRA and SEM investigation





#### Be Tiles from JET tokamak: Material deposition & compound formation XRF & XRD investigation



P. Tsavalas et al, Phys. Scr. T170 (2017) 014049

#### **Be castellated Tiles from JET tokamak**

#### Carbon deposition on the castellated sides - µ-beam NRA using a deuterium beam



#### NRA results from W lamellae – use of <sup>2</sup>H micro-beam <u>Carbon deposition</u>



### Investigation of carbon deposition & carbon depth profile in W lamellae from JET tokamak

| Lamella   | Exp.   | Sample | C Amount                               | Deposition                             |
|-----------|--------|--------|----------------------------------------|----------------------------------------|
|           | Period |        | (10 <sup>17</sup> at/cm <sup>2</sup> ) | Thickness                              |
|           |        |        |                                        | (10 <sup>18</sup> at/cm <sup>2</sup> ) |
| <b>C3</b> | ILW1   | 12 (2) | 24.8                                   | 10.7                                   |
| <b>C3</b> | ILW1   | 12 (1) | 166                                    | 33                                     |
| A23       | ILW1   | 7      | 2.21                                   | 10                                     |

Dina Mergia| PWIE-SP B.2 & B.3| Zoom| KoM 11 June 2021| 8

#### NRA and XRD results from W/CFC Tiles from the JET divertor





#### Elemental mapping from W/CFC Tiles from the JET divertor





#### 2021 workplan



### D007 RBS, SEM, XRD and XRF characterization of selected Be reference coatings and plasma-exposed samples

Analysis of reference and plasma exposed Be or W samples from the various devices Problems to be addressed

- Material deposition, depth profiles, compound formation
- Erosion
- Fuel retention
- Seeding species retention
- Microstructural changes
- Mechanical properties using depth-sensing indentation techniques

In-situ XRD annealing of plasma exposed samples to assess

- i) temperature effects on compound formation due to material deposition
- ii) microstructural changes.

Samples to be identified and specific problems to de defined

Suggestions for collaborations welcome (please send an email to <u>kmergia@ipta.demokritos</u> to discuss)