Upgrade of A&M database and CRM for hydrogenic molecules

Andreas Holm, Mathias Groth

Aalto University

June 21st 2021

CRMs consider a large set of species, states, and reactions and calculates effective rates for a smaller subset of species

 No (reasonable) one-size-fits-all "universal CRM" available

 \rightarrow Dependent on the local plasma conditions

- CRMs are 0D → transport effects must be evaluated using transport codes
- The model accuracy and applicability is dependent on data availability

 \rightarrow Isotopologue dependence (H₂, D₂, T₂, D-T)

EIRENE uses one- and two-dimensional polynomial fits compiled in the AMJUEL database

- Effective rate coefficients calculated for H₂
 - A&M data from Janev/Sawada
 - Vibrationally resolved rates (H2VIBR) calculated by internally rescaling ground-state rates
- Rates calculated using Sawada's CRM
 - Assumes thermally and vibrationally equilibrated plasmas
 - Electronic excitations omitted to reduce dimensionality
- EIRENE internally applies an isotopologue scaling based on mass
 - Different vibrational distributions not considered

The existing, well-established CR model YACORA will be compared and verified against EIRENE A&M data

- Utilizes a state-of-the-art database of reaction rates, including some vibrationally resolved H₂ rates
- Allows for evaluation of CR models considering additional reactions (electronic transitions, quenching of triplet states, etc)

- → Compare AMJUEL rates vs YACORA CR rates to assess the quality of the reaction rates and CR model
- → Investigate the impact of isotopologue (H₂, D₂, eventually, T₂, D-T) on the CR resolved reaction rates

Step 1: better understand EIRENE A&M data and CR rates to evaluate the data accuracy and its applicability

- Compare AMJUEL H₂ rates to YACORA rates
- Compare EIRENE internally rescaled D₂ rates to YACORA rates
- Evaluate the role of transport of vibrationally excited states on molecular rates

Status of YACORA A&M data May 2021 (courtesy of D. Wünderlich)

Input data for the different coupling channels.

Excitation channel		Initial model (improved Sawada)	Yacora now
н	Direct excitation	Johnson formula & Vriens 1980	Wünderlich 2009
H+	Recombination	Inverse ionization / Based on Gaunt factor	Inverse ionization / Based on Gaunt factor
H ₂	Dissociative excitation	Measured emissivties, scaled	Measured emissivties, scaled
H_2^+	Dissociative recombination	Janev 1987, scaled.	Janev 2003
H_3^+	Dissociative recombination	Not included	Janev 2003
H [−] with H ⁺	Mutual neutralization	Janev 1987	Stenrup 2009
H^- with H_2^+	Mutual neutralization	Not included	Janev 2003, Eerden 1995

Status of YACORA A&M data May 2021 (courtesy of D. Wünderlich) Input data used for H₂.

Excitation channel		Initial model (improved Sawada)	Yacora now
$H_2(X^1) \rightarrow H_2^*$	Direct excitation	Miles 1971	Fursa / Scarlett (MCCC)
$H_2^* \rightarrow H_2^+$	Ionization	scaled results for H	Wünderlich 2011
$H_2(n=2) \rightarrow H_2(n=2)$	Excitation of excited states	Zygelman (for hydrogen-like ions)	Fursa / Scarlett (MCCC)
$H_2(n=2) \rightarrow H_2(n=3)$	Excitation of excited states	scaled results for H	Fursa / Scarlett (MCCC)
$H_2(n>1) \rightarrow H_2(n>3)$	Excitation of excited states	scaled results for H	scaled results for H
$H_2(a^3 \text{ or } c^3)+H_2 \rightarrow 2H_2$	Quenching of triplet states	Not included	Wedding 1988
$H_2^*+H^+\rightarrow H_2^++H$	Charge exchange with H ⁺	Not included	Janev 2004
H ₂ *+e ⁻ →H ⁻ +H	Dissociative attachment	Not included	Hiskes 1996, Datskos 1997

Additionally:

- Available are ro-vibrationally resolved Corona models for Fulcher, Lyman, Werner, $a^3 \rightarrow b^3$ continuum. Partially for D₂ also.
- Planned next steps: use MCCC cross sections for fully vibrationally resolved model. H₂ and D₂.

Divertor plasmas span a wide range of temperatures and densities, necessitating collisional-radiative modeling (CRM)

Coronal equilibrium

- Collisional rates << radiative rates
- Low density, high temprature
- Excitations occur from the ground state only: limited by collisions

Hot, tenuous plasmas

Divertor plasmas

Cold, dense plasmas

Divertor plasmas span a wide range of temperatures and densities, necessitating collisional-radiative modeling (CRM)

Divertor plasmas span a wide range of temperatures and densities, necessitating collisional-radiative modeling (CRM)

Coronal equilibrium	Collisional-radiative regime	Local thermal equilibrium (LTE)
 Collisional rates << radiative rates Low density, high temprature Excitations occur from the ground state only: limited by collisions 	 Competing radiative and collisional processes Populations calculated from rate equations Collisional rates Radiative rates Plasma effects Excited states substantially populated → ladder-like processes 	 Collisional rates >> Radiative rates High densities Populations can be determined from energies and statistical weights Radiative rates negligible
Hot, tenuous plasmas	Divertor plasmas	Cold, dense plasmas

The different vibrational level distribution of H₂ and D₂ results in fundamentally different reaction rates for the isotopologues

- Internuclear distance a function of mass
- Transition probabilities dependent on the overlap of the vibrational wave function

