

SDTrimSP-3D based erosion modelling considering roughness

U. von Toussaint, R. Preuss 2021-06-28

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

28.06.2021

Motivation

- Sputter yield & reflection data from surface-physics experiments
 - Large data-base of sputter-yields (Y), reflection yields (R) and energy reflection coefficients R_E
 - Drawback:
 - Almost all are from well-prepared samples → do not match PFC-properties
 - (Few) Experiments with technical grade samples yield averaged values (Y only)
- Now: capability to derive Y, R, R_E from static & dynamic simulations (2D & 3D)

Si – 45° incidence, 15° rotation

Description of SDTrimSP-3D **Dynamic Experiments** Conclusions & Outlook

SDTrimSP-3D Si columns eroded by 5 keV Ar under 45° incidence, 15° rotation

Si – 45° incidence, 15° rotation

Description of SDTrimSP-3D **Dynamic Experiments**Conclusions & Outlook

SDTrimSP-3D Si columns eroded by 5 keV Ar under 45° incidence, 15° rotation

Overall good qualitative agreement

Project

Key issues

- Simulations are expensive (especially 3D) & yield huge amount of data
- Parameter explosion (surface topology) vs E, impact angle in 1D
- Standard surface description like RMS is utterly incomplete: same RMS from very different structures:

(e.g. Sciene 297 (2002), p. 973-976)

• → Different description is mandatory (but needs to be useful for relevant surfaces)

- Characterisation of surface structures via
 - Frequency spectrum (Fourier transform) or
 - Autocorrelation function (ACF)

$$= \frac{\iint \rho(x - x', y - y') \times \rho(x', y') dx' dy'}{\iint \rho^{2}(x, y) dx dy}$$

Both measures suited also for technical surfaces (ripples, grinding patterns)

Project

- Simulations (task)
 - Synthesize surfaces with known FFT and ACF
 - Simulate static and dynamic sample-ion-interaction
 - Extract Y, R, R_F and (try to) correlate with surface properties
 - Investigate fluence (=time) dependent evolution equations in FFT/ACF-space

Verification experiments

(timeline/exp. depending on availability of masterand – exp. facilities are present)

- Exposure of microstructured samples
 - Surfaces precharacterized with
 - AFM
 - SEM
 - Confocal microscopy
 - Exposure to ion beam (fixed energy and projectile), parameters:
 - Impact angle
 - Fluence

Project

