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Turbulence in stellarators

® Optimised stellarators: designed
to control neoclassical losses

® — Turbulent losses are
important

® Microinstabilities known from
tokamaks also found in
stellarators [cf. Klinger et al,
2019]

® Can the geometry of stellarators  [(w7x / IPP Greifswald]
be used to control turbulence?

® — Numerical simulations of
turbulence in stellarators
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Gyrokinetic simulations with stella

® stella (Barnes, Parra, Landreman; 2018) is §f-gyrokinetic code

e General magnetic geometry: 3D equilibrium from VMEC
® With f = F 4 6f, g = (6f)

par. dynamics

8g
aVH

6g ~ Ze [T
at+V|b~V(g+T<¢> ) ;b

+ v - (VJ_g+ ZTeVJ_<¢>F) +lve) (Vig +VIeF) = \C\[/g-l

E x B drifts collisions

mag. drifts

® Split parallel (fast) and perpendicular (slow) dynamics
® Treat parallel dynamics implicitly to avoid CFL constraint
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The collision operator

e Collisions are required for dissipation of energy into heat at small

scales

® Described by the Landau-Fokker-Planck operator:

Caplfa, o] =

0

8vk

[Aib f, +

0

8V/

(Di’f’fa)]

/
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mp” Ovy u

| S —
®b(v)

d*v/, Dy = —L%

2

with v :=|v —V/| and L?" a constant.

® (,p conserves particles, momentum and energy

e C,p is self-adjoint — satisfies Boltzmann's H-theorem

6Vk8V/

/ ufp(V') d*V/,
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The linearised operator

® Assume f; = foo + 0fs; fso0 Maxwellian; §fs/fo ~ € < 1.

® For species approximately in thermodynamic equilibrium

Cablfas fo] = Cablfar, foo] + Cablfaos for] +O(€?)

test particle coll.  field particle coll.

® Rosenbluth potentials of Maxwellian, ¢po(v), ¥po(v), can be
calculated explicitly

® Examine the test-particle operator first, return later to field particle
component
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Test particle operator

e With v, £ = cos6, ¢ velocity coordinates:

=:pitch angle scattering

9 1 1 8%f,

Cab[fa1, fro] = 85( 52 85 1_52 92
1 a1 . 9fh
o |27 FO@\/FO]

energy diffusion

v
Vith,b

® With collision frequency, v, and x, =

ng(v) berf(xb) G(Xb) ab( ) bzG(Xb)

14
x3 Al x3

with Chandrasekhar function, G. (1)
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Test particle operator (1)

* In stella, use v, u = 55 © coordinates. Then (with normalisations)

0 of,
ab
Cab[fa1, foo] = {% oy F 2+ vy Fan}
0 of, d 6f;
- F ab/: -2
+au {7” Oa,u Fo tym OavH Fo]
4 A L
2 ZBO,U 8¢2 ’
where 20 = Z/ﬁb vEP, and

ab._ 115 a a 2 Y
’yv‘l" =5 Z/Hbvﬁ + 21/DbBou] , fyub =2 [VleQ + I/D 3B, ,u]
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Gyroaveraged test particle operator

® Denote h:= d0f, + £¢Fo; Fourier analyze: h= 3", et Rpy

® Perform gyroaverage, () = 1/27 fo%' do
Colhi, ] = (" PCle™™* Phy, )k

® Gyrokinetic test-particle operator:

1
Cehlhd = 3P I = 5 [vi®Bop + vB (v + Borl | K p2h.

gyrodiff. term
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Implementation in stella

® stella advances GKE in terms of g = (0f) = h — Z(¢)Fo
® Treat collisions implicitly, to avoid CFL constraint [Atcpr, ~ (Av)?]
® Split non-collisional and collisional physics. For implicit treatment:

gn+1 _ g* o )
£ — i)

where g* is g after advancing non-collisional part of GKE
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Implicit algorithm

Implicit solve:

(1 _ AtCGK)hn—H _ g* + %<¢n+1>’:0

Write "1 = A7t 1 g7t then

hom inh
(1— AtCor)hit! = g*
(1— AtCox)h+t — %<¢"+1>F0 -0

hom

Solve Eq. [3] with band matrix solver

Use Green's function method to solve Eq. [4]

Summary
o]
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Green’s function method

® Use Green's function method to solve

(1 AtCai)hfit = o™ oo (5)

® Supply unit impulse to potential and solve
(1 — AtCek)dh/d¢ = qloFo/ T for response §h/d¢. Then

oh
Phom = 559" (6)

® Potential ¢"*1 is obtained via quasineutrality ¢"*! = Q[A"*1]. Q is
a velocity space integral operator. Then

= 3] )
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Green'’s function method (II)

® Then

n+1 _ ;n+1l _ ﬁ
ot = (1= 5]

® Solve for ¢"** (know ¢7+! = Q[hT1] from inhomogeneous
equation)

® Advance from g* to h"™*1 by solving

(1— AtCor)h™ = g* + %WHJOFO (8)
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Field particle operator

® The field particle operator is required for momentum and energy
conservation

e After linearising the collision operator, the field particle component is

0 2\ 0
Cilalfo, fo1] = {Lab< mb) ;?21 fo

9 ab Vb1
+(“)v/< L avkav/f )} ©)

where the Rosenbluth potentials are integrals in v/ over the
perturbed distribution function fy(v — v’)

® Inversion of the integro-differential operator [9] is slow

®* How do we include this operator efficiently in stella’s implicit
collision model?
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Spherical harmonic expansion

e Collisions are spherically symmetric — spherical harmonics (SH) are
eigenfunctions of the collision operator

® Expand in spherical harmonics:

oo +/

CGhalfo ful =3 3 Vim0, 0)C2 [ ()] (10)

1=0 m=—1
o £ are the SH expansion coefficients; C2*[£{™)] is an isotropic
operator, but still complicated

® How can C“,’b[fb(’m)] be expanded while retaining the conservation
properties, self-adjointness and null-space of the exact operator?
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Hirshman-Sigmar expansion

® Hirshman & Sigmar (1976): expansion that can be truncated and
retains the pertinent properties of the collision operator

N
™ 5 = > O1ma; [ 6 ho()]

j=0
® Basis functions via Gram-Schmidt orthogonalisation
Dolf] = G[f]
Bjalf) = 8,1 = "8y [}t P (@) o 0R)]
e with coefficients to ensure moment conservation and self-adjointness

VLD R)A(6D) vy
o vitlt: )( )A, [x L“*i)(xg)fbo(xg)} V2dv

¢Jﬁk(fb(l)) =
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Field particle operator

Truncating the Hirshman-Sigmar expansion after N terms exactly
retains the first N + 1 velocity moments of the full collision operator

Combine the spherical harmonic and Hirshman-Sigmar expansion
and gyroaverage

— the k-th Fourier component of the field particle operator is

oo m=+I/ oo
e A kiv
clieldabry, 1= SN cmPimlvy/v)J < L L) wj(l,ab)[th_]AJ(/,ab)

I=0 m=—1/ j=0

where Py, are Legendre polynomials and coefficients are given by

DO (v)] = 27r(—1)’”c/’,m//JmP/’,mhkL(z, v 1) AP dydpe
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Implementation of the field particle operator

® In the implicit time advance scheme we now have

n+1
(1 = AtCoest) )Tt = q(/) fo + AtChaa[h"] (11)

hom

® Applying the Green's function method to the fields wfb’l in Cgela:

n n dh m,n hmawlm
fo = o e e Sy =)

jlm

® — Linear system of equations for ¢"*! and fields 1/)"” L.

(- RIFT =70 (13)

where R contains the responses, and £™™* and £+ are vectors of
Im,n+1 1 I +1 .
the fields [¢"*1, {4/ }] and [¢7,", {¢; k" }], respectively
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Conservation tests

® In the limit k; = 0 the gyrokinetic collision operator should conserve
density, momentum and energy

® Evolution of these moments over 20 collision times, with field
particle terms (black) and without (blue, dashed):
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The Spitzer problem

® To test the accuracy of the collision model we solve:

qeE
Cee[fe] + Cei[fe; ﬁ):] = - [V| <T| - VH In POe)

=:h

+ v (xf - 2) [~V In TOe]:| Foe. (14)

=:l>

® Calculate Spitzer transport coefficients L11, L1o = Ly; and Loo:
ce,-/d3v Vjfe = Lirh + L12h (15)

and

ce,-/d3v vy (x2 =5/2) fo = Lioh + Laoh. (16)
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Spitzer coefficients

e Comparison with exact Fokker-Planck operator [Belli & Candy 2011,
PPCF]

0.2
B _03] B
204 g H
g 3 EM ]
2 =02
3 5
Loz L
H 201
= EM =
o =) EM
0.0
0 — 0.
None +ilo +ih i +il -+l None +illa +ioh +ith  +iah  +iols None Hilo il il il +ils
Field part. op. terms Field part. op. terms Field part. op. terms
I—ll I—12 = L21 I—22

® Including field particle terms up to j>/ yields Spitzer coefficients
that are accurate to within 1%
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Summary

® |Implemented a linearised Fokker-Planck collision model in stella
- Implicit scheme — no CFL constraint
- Satisfies conservation laws
- Flexible, scalable accuracy
® Next steps:
- test self-adjointness: currently only guaranteed on uniform p-grid in
stella
- GK simulations in stellarators
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