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Turbulence in stellarators

• Optimised stellarators: designed
to control neoclassical losses

• → Turbulent losses are
important

• Microinstabilities known from
tokamaks also found in
stellarators [cf. Klinger et al,
2019]

• Can the geometry of stellarators
be used to control turbulence?

• → Numerical simulations of
turbulence in stellarators

[W7X / IPP Greifswald]
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Gyrokinetic simulations with stella

• stella (Barnes, Parra, Landreman; 2018) is δf -gyrokinetic code
• General magnetic geometry: 3D equilibrium from VMEC
• With f = F + δf , g = 〈δf 〉

∂g

∂t
+

par. dynamics︷ ︸︸ ︷
v‖b̂ · ∇

(
g +

Ze

T
〈φ〉F

)
− µ

m
b̂ · ∇B ∂g

∂v‖

+ vM ·
(
∇⊥g +

Ze

T
∇⊥〈φ〉F

)
︸ ︷︷ ︸

mag. drifts

+ 〈vE 〉 · (∇⊥g +∇|EF )︸ ︷︷ ︸
E×B drifts

= C [g ]︸︷︷︸
collisions

• Split parallel (fast) and perpendicular (slow) dynamics
• Treat parallel dynamics implicitly to avoid CFL constraint
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The collision operator

• Collisions are required for dissipation of energy into heat at small
scales

• Described by the Landau-Fokker-Planck operator:

Cab[fa, fb] =
∂

∂vk

[
Aab

k fa +
∂

∂vl

(
Dab

kl fa
)]

Ak := Lab[1+
ma

mb
]
∂

∂vk

∫
fb(v′)
u

d3v ′︸ ︷︷ ︸
φb(v)

, Dkl := −Lab ∂2

∂vk∂vl

∫
ufb(v′) d3v ′︸ ︷︷ ︸
ψb(v)

,

with u := |v − v′| and Lab a constant.

• Cab conserves particles, momentum and energy
• Cab is self-adjoint → satisfies Boltzmann’s H-theorem
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The linearised operator

• Assume fs = fs0 + δfs ; fs0 Maxwellian; δfs/fs0 ∼ ε� 1.
• For species approximately in thermodynamic equilibrium

Cab[fa, fb] = Cab[fa1, fb0]︸ ︷︷ ︸
test particle coll.

+ Cab[fa0, fb1]︸ ︷︷ ︸
field particle coll.

+O(ε2)

• Rosenbluth potentials of Maxwellian, φb0(v), ψb0(v), can be
calculated explicitly

• Examine the test-particle operator first, return later to field particle
component
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Test particle operator

• With v , ξ = cos θ, φ velocity coordinates:

Cab[fa1, fb0] =

=:pitch angle scattering︷ ︸︸ ︷
1
2
νD

∂

∂ξ
(1− ξ2)

∂fa
∂ξ

+
1
2
νD

1
1− ξ2

∂2fa
∂φ2

+
1
v2

∂

∂v

[
1
2
ν‖v

4F0
∂

∂v

fa
F0

]
︸ ︷︷ ︸

energy diffusion

• With collision frequency, νab, and xb = v
vth,b

νab
D (v) :=νab erf(xb)− G (xb)

x3
a

, νab
‖ (v) := νab 2G (xb)

x3
a

with Chandrasekhar function, G . (1)
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Test particle operator (II)

• In stella, use v‖, µ =
mv2

⊥
2B coordinates. Then (with normalisations)

Cab[fa1, fb0] =
∂

∂v‖

[
γv‖F0

∂

∂v‖

δfa
F0

+ v‖µν
ab
x F0

∂

∂µ

δfa
F0

]
+
∂

∂µ

[
γµF0

∂

∂µ

δfa
F0

+ v‖µν
ab
x F0

∂

∂v‖

δfa
F0

]
+
νab

D

2

[
1 +

v2
‖

2B0µ

]
∂δf 2

a

∂φ2 ,

where νab
x = νab

‖ − νab
D , and

γab
v‖

:=
1
2

[
νab
‖ v2
‖ + 2νab

D B0µ
]
, γab

µ := 2

[
νab
‖ µ

2 + νab
D

v2
‖

2B0
µ

]
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Gyroaveraged test particle operator

• Denote h := δfa + q
T φF0; Fourier analyze: h =

∑
k⊥

e ik⊥·Rhk⊥

• Perform gyroaverage, 〈·〉 = 1/2π
∫ 2π
0 · dφ

CGK [hk⊥ ] = 〈e ik⊥·ρC [e−ik⊥·ρhk⊥ ]〉R
• Gyrokinetic test-particle operator:

C ab
GK[hk] = C ab

v‖,µ
[hk]− 1

2

[
νab
‖ B0µ+ νab

D [v2
‖ + B0µ]

]
k2
⊥ρ

2
shk︸ ︷︷ ︸

gyrodiff . term

.
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Implementation in stella

• stella advances GKE in terms of g = 〈δf 〉 = h − q
T 〈φ〉F0

• Treat collisions implicitly, to avoid CFL constraint [∆tCFL ∼ (∆v)2]
• Split non-collisional and collisional physics. For implicit treatment:

gn+1 − g∗

∆t
= C test

GK [hn+1]

where g∗ is g after advancing non-collisional part of GKE
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Implicit algorithm

• Implicit solve:

(1−∆tCGK)hn+1 = g∗ +
q

T
〈φn+1〉F0 (2)

• Write hn+1 = hn+1
hom + hn+1

inh , then

(1−∆tCGK)hn+1
inh = g∗ (3)

(1−∆tCGK)hn+1
hom −

q

T
〈φn+1〉F0 = 0 (4)

• Solve Eq. [3] with band matrix solver
• Use Green’s function method to solve Eq. [4]
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Green’s function method

• Use Green’s function method to solve

(1−∆tCGK)hn+1
hom =

q

T
φn+1J0F0 (5)

• Supply unit impulse to potential and solve
(1−∆tCGK)δh/δφ = qJ0F0/T for response δh/δφ. Then

hn+1
hom =

δh

δφ
φn+1 (6)

• Potential φn+1 is obtained via quasineutrality φn+1 = Q[hn+1]. Q is
a velocity space integral operator. Then

φn+1
hom = φn+1Q

[
δh

δφ

]
(7)
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Green’s function method (II)

• Then

φn+1
inh = φn+1

(
1− Q

[
δh

δφ

])
• Solve for φn+1 (know φn+1

inh = Q[hn+1
inh ] from inhomogeneous

equation)
• Advance from g∗ to hn+1 by solving

(1−∆tCGK)hn+1 = g∗ +
q

T
φn+1J0F0 (8)
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Field particle operator

• The field particle operator is required for momentum and energy
conservation

• After linearising the collision operator, the field particle component is

C ab
field[fa0, fb1] =

∂

∂vk

[
Lab

(
1 +

ma

mb

)
∂φb1

∂vk
fa0

+
∂

∂vl

(
− Lab ∂

2ψb1

∂vk∂vl
fa0

)]
(9)

where the Rosenbluth potentials are integrals in v ′ over the
perturbed distribution function fb(v − v ′)

• Inversion of the integro-differential operator [9] is slow
• How do we include this operator efficiently in stella’s implicit
collision model?
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Spherical harmonic expansion

• Collisions are spherically symmetric → spherical harmonics (SH) are
eigenfunctions of the collision operator

• Expand in spherical harmonics:

C ab
field[fa0, fb1] =

∞∑
l=0

+l∑
m=−l

Ylm(θ, φ)C ab
v

[
f
(lm)

b (v)
]

(10)

• f
(lm)

b are the SH expansion coefficients; C ab
v [f

(lm)
b ] is an isotropic

operator, but still complicated
• How can C ab

v [f
(lm)

b ] be expanded while retaining the conservation
properties, self-adjointness and null-space of the exact operator?
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Hirshman-Sigmar expansion
• Hirshman & Sigmar (1976): expansion that can be truncated and

retains the pertinent properties of the collision operator

C (N)
v

[
f lm
b

]
=

N∑
j=0

ψ
∗(l)
j [f lm

b ]∆j

[
x l

bL
(l+ 1

2 )
j (x2

b )fb0(x2
b )
]
,

• Basis functions via Gram-Schmidt orthogonalisation

∆0[f ] = Cv [f ]

∆j+1[f ] = ∆j [f ]− ψ(l)
j ∆j

[
x l

bL
(l+ 1

2 )
j (x2

b )fb0(x2
b )
]
.

• with coefficients to ensure moment conservation and self-adjointness

ψ∗j (f
(l)

b ) =

∫∞
0 v lL

(l+ 1
2 )

j (x2
b )∆j (f

(l)
b ) v2dv∫∞

0 v lL
(l+ 1

2 )
j (x2

b )∆j

[
x l

bL
(l+ 1

2 )
j (x2

b )fb0(x2
b )
]
v2dv
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Field particle operator

• Truncating the Hirshman-Sigmar expansion after N terms exactly
retains the first N + 1 velocity moments of the full collision operator

• Combine the spherical harmonic and Hirshman-Sigmar expansion
and gyroaverage

• → the k-th Fourier component of the field particle operator is

Cfield,ab
GK [hk⊥ ] =

∞∑
l=0

m=+l∑
m=−l

∞∑
j=0

clmPlm(v‖/v)Jm

(
k⊥v⊥

Ω

)
ψ
(l,ab)
j [hk⊥ ]∆

(l,ab)
j

• where Plm are Legendre polynomials and coefficients are given by

ψ
(l,ab)
j [hlm

k⊥
(v)] = 2π(−1)mcl,−m

∫ ∫
JmPl,−mhk⊥(z , v‖, µ)∆

(l,ba)
j dv‖dµ
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Implementation of the field particle operator

• In the implicit time advance scheme we now have

(1−∆tCtest)h
n+1
hom =

qφn+1

T
f0 + ∆tCfield[hn+1] (11)

• Applying the Green’s function method to the fields ψab,l
j in Cfield:

hn+1
hom = φn+1 δhhom,φ

δφ
+
∑
jlm

ψlm,n+1
j

δhhom,ψlm
j

δψlm
j

(12)

• → Linear system of equations for φn+1 and fields ψlm,n+1
j :

[I − R] f n+1 = f n+1
inh (13)

where R contains the responses, and f n+1 and f n+1
inh are vectors of

the fields [φn+1, {ψlm,n+1
j }] and [φn+1

inh , {ψ
lm,n+1
j,inh }], respectively
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Conservation tests
• In the limit k⊥ = 0 the gyrokinetic collision operator should conserve

density, momentum and energy
• Evolution of these moments over 20 collision times, with field

particle terms (black) and without (blue, dashed):

0 10 20
tνii

0.0

0.2

0.4

0.6

0.8

1.0

δu
‖i

(t
)

conservative

non-conservative

Momentum

0 10 20
tνii

0.97

0.98

0.99

1.00

δT
i(
t)
/δ
T
i(
t

=
0)

conservative

non-conservative

Energy
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The Spitzer problem
• To test the accuracy of the collision model we solve:

Cee [fe ] + Cei [fe , f0i ] = −
[
v‖

(
qeE‖
Te
−∇‖ ln p0e

)
︸ ︷︷ ︸

=:I1

+ v‖

(
x2

e −
5
2

)
[−∇‖ lnT0e︸ ︷︷ ︸

=:I2

]

]
F0e . (14)

• Calculate Spitzer transport coefficients L11, L12 = L21 and L22:

cei

∫
d3v v‖fe = L11I1 + L12I2 (15)

and

cei

∫
d3v v‖

(
x2

e − 5/2
)
fe = L12I1 + L22I2. (16)
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Spitzer coefficients

• Comparison with exact Fokker-Planck operator [Belli & Candy 2011,
PPCF]

None +j1l0 +j0l1 +j1l1 +j2l1 +j0l3

Field part. op. terms

0.0

0.2

0.4

(L
11
,e

x
ac

t
−
L

11
)/
L

11
,e

x
ac

t

EM

L11

None +j1l0 +j0l1 +j1l1 +j2l1 +j0l3

Field part. op. terms

0.0

0.1

0.2

0.3

(L
21
,e

x
ac

t
−
L

21
)/
L

21
,e

x
ac

t

EM

L12 = L21

None +j1l0 +j0l1 +j1l1 +j2l1 +j0l3

Field part. op. terms

0.0

0.1

0.2

(L
22
,e

x
ac

t
−
L

22
)/
L

22
,e

x
ac

t

EM

L22

• Including field particle terms up to j2l1 yields Spitzer coefficients
that are accurate to within 1%
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Summary

• Implemented a linearised Fokker-Planck collision model in stella
- Implicit scheme → no CFL constraint
- Satisfies conservation laws
- Flexible, scalable accuracy

• Next steps:
- test self-adjointness: currently only guaranteed on uniform µ-grid in
stella

- GK simulations in stellarators
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