
Experience from the recent
HDF5 output development
including OOP in FORTRAN

TSVV-5 VC

J. Gonzalez; 09-07-2021

HDF5 output

/13

Structure of HDF5 output

• HDF5 is organized in datasets. A single file can contain datasets with different size and value
types. Datasets can be grouped.

• Metadata can be added to the datasets to include relevant information.

• Current implementation in Eirene:
 Branch feature/hdf5 in Jülich repository.
 Option in input file to activate HDF5 output.
 Output of tallies.
 Grid not fully implemented.

• Procedures required for HDF5 output are in module.
 Easy to apply to other output files.

09-07-2021

J. Gonzalez; TSVV-5 VC 3Fig 1. Structure of HDF5 output in
Eirene.

Object Oriented Programming

/13

OOP philosophy

• In a OOP code, regardless of the language used, the basic unit to perform tasks becomes an
object, which has its own variables and procedures.

• Objects can be extended, creating a hierarchy.

• The code is usually transparent to the object type. This means that the main program does
not bother to check what type of object you are using, as it is responsibility of the object to
perform tasks object dependent.

09-07-2021

J. Gonzalez; TSVV-5 VC 5

/13

OOP simple example (I)

• Let us check how a very simple problem can be easily solved with OOP.

• An user inputs a series of geometries (circles, rectangles, triangles…) and wants to compute
the area of all of them.

• First, a TYPE named geometry will be created. All other geometries will be extended from this
type. The TYPE has a calculateAera() procedure which is DEFERRED, meaning that each
extended type needs to implement it own procedure to calculate the area.

09-07-2021

J. Gonzalez; TSVV-5 VC 6

TYPE, PUBLIC, ABSTRACT:: geometry
 CONTAINS
 PROCEDURE(calculateArea_interface), PASS, DEFERRED:: calculateArea

END TYPE geometry

ABSTRACT INTERFACE
 FUNCTION calculateArea_interface(self) RESULT(area)
 IMPORT:: geometry
 CLASS(geometry), INTENT(in):: self
 REAL(8):: area

 END FUNCTION calculateArea_interface

END INTERFACE

/13

OOP simple example (II)

• Now, each shape becomes an extension of
geometry and has it own implementation of
calculateArea().

• Procedure needs to fulfill the interface
defined in geometry.

• So, when the code wants to calculate the
area of a specific geometry, it will call
calculateArea() without knowing if the object
is a rectangle or a circle.

• In a non-OOP approach, a manual way to
identify geometries (usually an INTEGER),
would have to be used and a SELECT CASE
employed to calculate the specific area.

• This increases the code complexity and
hinders its extension.

09-07-2021

J. Gonzalez; TSVV-5 VC 7

TYPE, PUBLIC, EXTENDS(geometry):: rectangle
 REAL(8):: l, h
 CONTAINS
 PROCEDURE, PASS:: calculateArea => calculateAreaRectangle

END TYPE rectangle

TYPE, PUBLIC, EXTENDS(geometry):: circle
 REAL(8):: r
 CONTAINS
 PROCEDURE, PASS:: calculateArea => calculateAreaCircle

END TYPE circle

FUNCTION calculateAreaRectangle(self) RESULT(area)
 IMPLICIT NONE

 CLASS(rectangle), INTENT(in):: self
 REAL(8):: area

 area = self%l * self%h

END FUNCTION calculateAreaRectangle

FUNCTION calculateAreaCircle(self) RESULT(area)
 USE constants, ONLY: PI
 IMPLICIT NONE

 CLASS(circle), INTENT(in):: self
 REAL(8):: area

 area = PI * self%r**2

END FUNCTION calculateAreaCircle

How basic OOP concepts are used for
HDF5 and ASCII output

8

/13

Simple OOP for HDF5 output in Eirene

• Currently, a simple implementation of OOP is used to deal with the output of tallies in ASCII
and HDF5 formats.

• Eirene has different tallies: Input, Volume Averaged (Output) and Surface Averaged (Output).

• Each tally has different units and dimension and they are written in a different way.

• New abstract type for tallies, extended for each tally type.

• Each type has information about name, units, id and pointers to the data (same structure as
before regarding data management).

• Each tally type has subroutines to write its own information in ASCII or HDF5 formats.

• Reduction of IF and SELECT CASE clauses.

• Much clearer code.

• Additional improvements could be done, but require a deeper modification of Eirene.

09-07-2021

J. Gonzalez; TSVV-5 VC 9

/13

Examples of Code

09-07-2021

J. Gonzalez; TSVV-5 VC 10

Fig 2. Generic type for tallies.
Fig 3. Extension for input tallies.

Fig 4. Input tally for 1D data.

Fig 5. Input tally for 2D data.

Thank you for your
attention

J. Gonzalez | TSVV-5 VC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

