
Experience from the EIRENE OpenMP
parallelization and refactoring

and some general thougths

Y. Marandet, P. Genesio
H. Leggate (HLST/ACH)

TSVV#5 Regular VC, July 9th 2021

Ø Ring-fence parts of the code (as small as possible) which needs to be
optimized, increasing readability & maintainability, clarity in order to:

q Help improve the efficiency per core (identify and reduce main hotspots,
allow better optimization by the compiler by e.g. reducing branching,
improving structure, possibly changing tally structure ….)

q Enable large grids by domain decomposition (possibly on a reduced set of
geometries)

Note : keep in mind that some aspect of pre-processing (Collisional Radiative
model in each cell may become substantial in terms of computing time)

Objectives of EIRENE ‘core segregation’

First attempt to define a ‘core’

Ø The part which performs particle tracing and tally scoring
Ø Located into eirmod_mcarlo.f, ~ 50 lines with 5 gotos (see next

slide, would benefit from a - very careful - rewrite)

On the left – follow a particle, on the right follow any secondary particle
(sputtered atoms, …)

C...
C NEXT MONTE CARLO HISTORY
c
c LAUNCH A NEW PARTICLE NOW
c...

XMCP(ISTRA)=XMCP(ISTRA)+1.
NPANU=NPANU+1

IPANU=IPANU+1
ITRJ = NCHORI + MOD(IPANU,NTRJ) + 1
NLEVEL=0
CALL EIRENE_LOCAT1(IPANU)

C IS BIRTH PROCESS SURVIVED?
IF (.NOT.LGPART) GOTO 110

C
102 CONTINUE

C FOLLOW NEUTRAL PARTICLE
IF (ITYP.EQ.0.OR.ITYP.EQ.1.OR.ITYP.EQ.2) THEN

CALL EIRENE_FOLNEUT
C FOLLOW TEST ION

ELSEIF (ITYP.EQ.3) THEN
CALL EIRENE_FOLION

ENDIF
C NEXT GENERATION ?

IF (LGPART) GOTO 102
C

110 CONTINUE

IF (NLRAY(ISTRA)) THEN
CALL EIRENE_CLEAR_TRAJECTORY (ITRJ)

END IF

C NUMBER OF REMAINING NODES AND NUMBER OF LEVELS AT NEXT

NODE

IF (NLEVEL.GT.0) THEN

104 INODES=NODES(NLEVEL)-1

NODES(NLEVEL)=INODES

IF(INODES.LE.0) GO TO 103

C RESTORE VARIABLES AND START NEW TRACK

DO 105 J=1,NPARTC

RPST(J)=RSPLST(J,NLEVEL)

105 CONTINUE

DO 106 J=1,MPARTC

IPST(J)=ISPLST(J,NLEVEL)

106 CONTINUE

ITYP=ISPEZI(ISPZ,-1)

IPHOT=ISPEZI(ISPZ,0)

IATM=ISPEZI(ISPZ,1)

IMOL=ISPEZI(ISPZ,2)

IION=ISPEZI(ISPZ,3)

IPLS=ISPEZI(ISPZ,4)

CALL EIRENE_NCELLN(NCELL,NRCELL,NPCELL,NTCELL,NACELL,

. NBLOCK,NR1ST,NP2ND,NT3RD,NBMLT,NLRAD,NLPOL,NLTOR)

NBLCKA=NSTRD*(NBLOCK-1)+NACELL

NLSRFX=MRSURF.GT.0

NLSRFY=MPSURF.GT.0

NLSRFZ=MTSURF.GT.0

NLSRFA=MASURF.GT.0

IF (NLTRC) CALL EIRENE_CHCTRC(X0,Y0,Z0,0,12)

! PARTICLE TYPE AND SPECIES MAY HAVE CHANGED

! PREPARE POINTER FOR UNIFIED SUBROUTINES FPATH, UPDATE,

ETC.

CALL EIRENE_SWITCH_PARTINFO

IC_NEUT=0

IC_ION=0

GOTO 102

C RETURN TO PREVIOUS LEVEL

103 CONTINUE

NLEVEL=NLEVEL-1

IF(NLEVEL.GT.0) GOTO 104

ENDIF

C HISTORY HAS ENDED

Ø However these 50 lines have calls to routines in particle-tracing/,

q which then call routines in surface-processes/, volume_processes/, scoring/
folders; with several associated modules in modules/

q In the 4 folders above : 18594+12718+12718 + 4339 = 48369 lines ~ 33%
(Total lines in the code (develop_openmp) = 136996 lines)

q order of magnitude estimate but shows the current complexity/size of the
routines performing the core functions …

How to reduce the amount of code to deal with ?

Limit strictly to moving particles within the grid : fol*.f, eirmod_time*.f ??

First attempts to define a ‘core’

Possible ways towards simplification
Ø In fol*, time* routines, several (5-10) select case or if/elseif or gotos structures on the geometry

option (LEVGEO)
LEVGEO=1-5 ; 10 (7 options, 2 used in coupled cases 4 = triangles and 10 for EMC3)
find an intelligent way to disentangle this (+ focus on the most relevant options for optimizing ?)

(NB : the code is specific to each options)
use an OOP approach as nicely illustrated by Jorge ?

Ø in fpath.f, lots of branching on MODCOL array (defining how various rates are calculted to obtain
mean free paths) – same thing, can we cleverly disetangle this ? OOP ?

Ø update.f : lots of ‘if’ to check if tallies active or not at every call

Ø ‘Streamlining’ these routines
- should make the code more readable
- may also help enable further compiler optimization of the code

(is this really true with OOP ? (Strongly dependant on array of structures vs structures of array
performances for instance ?)

Experience from OpenMP parallelization

Ø Use the routines where $!OMP pragmas are used as an alternative indication of how many

routines may actually be called during particle tracing – depends of course on input parameters

- > 55 routines (mostly in the folders discussed previously + some others scattered around, some

re-ordering might be in line)

Ø Most of the time is spent in routine update.f, to score tallies.

Scoring after trajectories may improve things substantially (for OpenMP but also more more

generally)

Area where optimization could play a large role on single core performance also

Some general thoughts in conclusion
Ø Given the time frame and resources of the project an incremental approach is the only way to reach

deliverables – this rules out

- changing coding langage (C++)

- full rewriting of the ‘core’ – the later, based on particle tracing + scoring, is still laaaarge

(in spite of the fact that a full rewrite could bring large benefits on the long term).

ØOOP fortran features (modules, derived types & interfaces) already there in bits and pieces, build
gradually on these good programming practices. Jorge’s work nicely shows how this can be used in
practice.

Ø ‘User routines’ are where users will first be exposed to fortran and inner workings to implement specific
features (standalone or coupled)

no straightforward way this can be easily replaced by scripts.

The preprocessor is already written in fortran, doing it again with scripts will take a lot of resources.

