

PWIE SP X2 PROJECT CORIA-CEA LIBS Activity

Double pulse ps-ps LIBS measurements

Arnaud BULTEL[‡], Aurélien FAVRE, Vincent MOREL

CORIA, UMR 6614, CNRS-Normandie Université-INSA de Rouen, 76801 St-Etienne du Rouvray cedex

[‡]arnaud.bultel@coria.fr

Elodie BERNARD¹, Christian GRISOLIA

¹CEA Cadarache, IRFM, 13115 Saint-Paul-lez-Durance

Why DP ps-ps LIBS?

Reduction of the ablation rate

Atoms A to be measured?	H – D – T
Type of sample?	W – Al – SS316L – Be
Mole fraction values x _A ?	0.1 % < x_A < 10 %
Depth δ of the measurement?	0 < δ < 10 μm
Tokamak conditions	p ~ 10 Pa

Video – July 15, 2021 – A. BULTEL

Why DP ps-ps LIBS? Difficulty to populate hydrogen or isotopes excited states responsible for the Balmer series lines

Video – July 15, 2021 – A. BULTEL

Promising solution for the measurement of Helium

Why DP ps-ps LIBS?

Need to increase the population density of the upper state of the transitions

Video – July 15, 2021 – **A. BULTEL**

Example of calculations performed with the MERLIN code (based on the resolution of the Radiative Transfer Equation in LTE conditions)

