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* Internal and edge transport barriers
* Internal transport barrier formation
 Milestones and deliverables

* Turbulent self-interaction

* Preliminary results:
e Linear simulations
e Nonlinear simulations

e Current work



=PFL Internal and edge transport
barriers

H-mode (edge transport barrier) Internal transport barrier (ITB)
* Transport bifurcation * Transport bifurcation
* Gradient steepening * Gradient steepening
* ExB shearing flow * ExXB shearing flow
* High magnetic shear * Low or negative magnetic shear
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=PrL Core region — easler to
investigate numerically

* No coupling to scrape-off layer;
* Relatively simple geometry;

* Low collisionality;

 Low fluctuation levels;

* No neutrals.
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=Pr-L ITB formation
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* Low or negative magnetic shear § is crucial;
* |TBs are often localized around rational g;

* Presence of integer minimum g seems to
be especially favourable for ITB formation

Additionally:
* Heating power threshold

References:

* Kldaand T Fujita 2018 Plasma Phys. Control. Fusion 60 033001
* JW. Connor et al. 2004 Nucl. Fusion 44 R1

* X. Garbet et al. 2010 Nucl. Fusion 50 043002
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E P F L g=3 ITB g=2 ITB q=1I1TB
Pulse 46050 (3.4T)  Pulse 51 599 (2.6T)  Pulse 51862 (2.6T)
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E P F L g=3 ITB g=2 ITB q=1I1TB
Pulse 4605Q (3.4T) Pulse 51599 (2.6T) Pulse 51862 (2.6T)
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=Pr-L Deliverables and milestones 1
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D4.1 Quantification of ITB momentum drive from rational vs
irrational surfaces and comparisons to plasma edge

Target date
02/2022

M4.1 Quantify momentum drive from rational vs irrational
surfaces in ITBs and compare to momentum drive at plasma
edge and determine relationship of parallel correlation length
with magnetic shear.

Target date
12/2021
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=Pr-L Deliverables and milestones 1

D4.1 Quantification of ITB momentum drive from rational vs Target date
irrational surfaces and comparisons to plasma edge 02/2022
M4.1 Quantify momentum drive from rational vs irrational Target date
surfaces in ITBs and compare to momentum drive at plasma 12/2021
edge and determine relationship of parallel correlation length

with magnetic shear.

The proposed plan has not changed substantially and we are

B Swiss on track, working towards the milestones.
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Internal transport barrier
investigation in local gyrokinetic
simulations
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—P=L Turbulent self-interaction

On low order rational surfaces (q=2,2.5,3,...)

Magnetic field lines exactly close on themselves

Strong parallel self-interaction

B Swiss References:
Plasma * J.Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

C * Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using
enter gyrokinetic simulations, Thesis EPFL Lausanne, 2020
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=Pr-L Self-interaction

e Self-interaction alters fluctuation behaviour both
linearly and non-linearly

e Turbulent self-interaction can be visualized in real
space as “eddy biting its own tail”

B Swiss References:
Plasma * J.Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

C * Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using
enter gyrokinetic simulations, Thesis EPFL Lausanne, 2020
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Self-interaction

Poloidal direction

Toroidal direction
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=Pi-L
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=PrL Flux-tube
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Simulations using local flux-
tube GENE code (Eulerian
Of code)

Twist and shift parallel
boundary condition ->
special radial locations
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=PrL Flux-tube
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Simulations using local flux-
tube GENE code (Eulerian
Of code)

Twist and shift parallel
boundary condition ->
special radial locations
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=P~L Turbulent self- mterachon
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=P~L Turbulent self- mterachon
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=P~L |TB triggering
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Low magnetic shear important for ITB formation

Integer (or low order rational) surfaces important for ITB
formation

Turbulent self-interaction strongest around rational
surfaces

Turbulent self-interaction seems to be stabilizing

>

Low magnetic shear + self-interaction = ITB ?
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cPFL Preliminary study

 Linear low and zero shear simulations
* Nonlinear low and zero shear simulations
 Simulations with kinetic electrons

e Starting point — Cyclone Base Case (CBC) parameters

M Swiss
Plasma References: Dimits et al. 2000, Physics of Plasmas 7, 969
Center



cPrFL Linear study with kinetic electrons
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We believe we observe transition
from toroidal to slab ITG mode as
magnetic shear approaches zero.
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cPrFL Linear study with kinetic electrons
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cPFL Linear study with kinetic electrons
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=Pr-L Linear stud
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with kinetic electrons

With CBC drive discontinuity at s=0

Toroidal ITG growth rate reduced by
self-interaction at s=0
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cPrFL Linear study with kinetic electrons
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cPrL Key linear results

So far the main takeaway from linear studies is that at low
magnetic shear there can be a transition to slab ITG.

* The linear growth rate of toroidal ITG was strongly reduced
by self-interaction unlike slab ITG;

* Slab ITG extends further along magnetic field lines;

* This transition could be very important for turbulent self-
interaction.
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cPFL Nonlinear study

For s=0.1 we see a strong corrugation in the plasma profiles
when compared to background gradients

lon Temperature

Minor radius
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cPrL Temperature gradients and auto-correlation
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cPrL Temperature gradients and auto-correlation
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=PL Density gradients and auto-correlation
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=Pr~L Electric field and auto-correlation
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cPrFL Radial Electric field well at the edge
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cPrFL Radial Electric field well at the edge
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=EPFL Effects of Ny, on corrugations

Number of poloidal turns N,,,; has a large

impact on profile corrugation due to reduction
of self-interaction
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cPF~L s=0boundary

In the s=0 case
* Linear growth rates change slowly with g
* Periodic parallel boundary with a shift
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=P~L Nonlinear simulations with adiabatic electrons
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=P~L Nonlinear simulations with adiabatic electrons
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cPrL Key nonlinear results

Significant changes in the turbulent behaviour in simulations
with low magnetic shear

e Strong stationary corrugations around low order rational
surfaces that are comparable to the background profile
gradients;

* We believe that this is a consequence of strong turbulent
self-interaction in the parallel direction;

* Turbulent self-interaction seems to be stabilizing;

e Started comparisons between radial electric fields in the
core with observed radial electric field wells at the plasma
edge
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Currently outstanding questions
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=PF~L s=0long wavelength parallel wave
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['(x) =< nv, >pg

=Pr~L Radial particle flux e
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=P~L Radial particle flux - 06, X
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=P~L Summary

* Transition between slab and toroidal ITG modes in linear study
identified;

 MA4.1: Found strong plasma profile (i.e. ¢, Vnq, VT;) corrugations
around rational surfaces for § < 0.1;

* MA4.1: Preliminary ITB simulations display a normalized E,. well that is
comparable to experimental measurements in pedestal (pedestal
E.. well is roughly 2 times narrower and 2 deeper);

e MA4.1: Parallel correlation of turbulent eddies become much longer
when § < 0.1 and very long wavelength modes appear for§ = 0
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Thank you for your attention
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