

First insights into ITB physics

A progress report for TSVV1 workshop

Arnas Volčokas Justin Ball, Stephan Brunner

EPFL Outline

- Internal and edge transport barriers
- Internal transport barrier formation
- Milestones and deliverables
- Turbulent self-interaction
- Preliminary results:
 - Linear simulations
 - Nonlinear simulations
- Current work

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
- ExB shearing flow
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- ExB shearing flow
- Low or negative magnetic shear

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
 - ExB shearing flow
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- ExB shearing flow
- Low or negative magnetic shear

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
- ExB shearing flow
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- ExB shearing flow
- Low or negative magnetic shear

Core region – easier to investigate numerically

- No coupling to scrape-off layer;
- Relatively simple geometry;
- Low collisionality;
- Low fluctuation levels;
- No neutrals.

EPFL ITB formation

- Low or negative magnetic shear \hat{s} is crucial;
- ITBs are often localized around rational q;
- Presence of integer minimum q seems to be especially favourable for ITB formation

Additionally:

• Heating power threshold

Swiss Plasma Center

References:

- K Ida and T Fujita 2018 Plasma Phys. Control. Fusion 60 033001
- J.W. Connor et al. 2004 Nucl. Fusion 44 R1
- X. Garbet et al. 2010 Nucl. Fusion 50 043002

Swiss
Plasma
Center

EPFL

8

E Joffrin et al 2002 Plasma Phys. Control. Fusion 44 1739

Swiss
Plasma
Center

EPFL

9

E Joffrin et al 2002 Plasma Phys. Control. Fusion 44 1739

D4.1 Quantification of ITB momentum drive from rational vs irrational surfaces and comparisons to plasma edge	Target date 02/2022
M4.1 Quantify momentum drive from rational vs irrational surfaces in ITBs and compare to momentum drive at plasma edge and determine relationship of parallel correlation length with magnetic shear.	Target date 12/2021

D4.1 Quantification of ITB momentum drive from rational vs irrational surfaces and comparisons to plasma edge	Target date 02/2022
M4.1 <u>Quantify momentum drive from rational vs irrational</u> <u>surfaces in ITBs</u> and compare to momentum drive at plasma edge and determine relationship of parallel correlation length with magnetic shear.	Target date 12/2021

D4.1 Quantification of ITB momentum drive from rational vs irrational surfaces and comparisons to plasma edge	Target date 02/2022
M4.1 Quantify momentum drive from rational vs irrational surfaces in ITBs and <u>compare to momentum drive at plasma</u>	Target date
<u>edge</u> and determine relationship of parallel correlation length with magnetic shear.	12/2021

D4.1 Quantification of ITB momentum drive from rational vs irrational surfaces and comparisons to plasma edge	Target date 02/2022
M4.1 Quantify momentum drive from rational vs irrational surfaces in ITBs and compare to momentum drive at plasma edge and <u>determine relationship of parallel correlation length</u> with magnetic shear.	Target date 12/2021

D4.1 Quantification of ITB momentum drive from rational vs irrational surfaces and comparisons to plasma edge	Target date 02/2022
M4.1 Quantify momentum drive from rational vs irrational surfaces in ITBs and compare to momentum drive at plasma edge and determine relationship of parallel correlation length with magnetic shear.	Target date 12/2021

The proposed plan has not changed substantially and we are on track, working towards the milestones.

Internal transport barrier investigation in local gyrokinetic simulations

EPFL Turbulent self-interaction

On low order rational surfaces (q=2,2.5,3,...)

Magnetic field lines exactly close on themselves

Strong parallel self-interaction

Swiss Plasma Center

References:

- J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020

- Self-interaction alters fluctuation behaviour both linearly and non-linearly
- Turbulent self-interaction can be visualized in real space as "eddy biting its own tail"

Swiss Plasma Center

References:

- J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020

q = 2.5

q = 2.5

Toroidal direction

q = 2.5

Toroidal direction

q = 2

Toroidal direction

q = 2

Toroidal direction

$$q = 2$$

Toroidal direction

EPFL Flux-tube

- Simulations using local fluxtube GENE code (Eulerian δf code)
- Twist and shift parallel boundary condition -> special radial locations

J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

EPFL Flux-tube

- Simulations using local fluxtube GENE code (Eulerian δf code)
- Twist and shift parallel boundary condition -> special radial locations

J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

EPFL Turbulent self-interaction

Drives ExB shear flow around rational surfaces

J. Dominski et al. 2015 Physics of Plasmas 22, 062303

EPFL Turbulent self-interaction

EPFL ITB triggering

- Low magnetic shear important for ITB formation
- Integer (or low order rational) surfaces important for ITB formation
- Turbulent self-interaction strongest around rational surfaces
- Turbulent self-interaction seems to be stabilizing

Low magnetic shear + self-interaction = ITB ?

EPFL Preliminary study

- Linear low and zero shear simulations
- Nonlinear low and zero shear simulations
- Simulations with kinetic electrons
- Starting point Cyclone Base Case (CBC) parameters

We believe we observe **transition from toroidal to slab ITG mode** as magnetic shear approaches zero.

Swiss Plasma Center

 $k_y \rho_i = 0.45$

Slab ITG to toroidal ITG for purely ITG drive

Swiss Plasma Center

 $k_y \rho_i = 0.45$

Swiss

Plasma

Center

With CBC drive discontinuity at s=0

Toroidal ITG growth rate reduced by self-interaction at s=0

Swiss Plasma Center

 $k_y \rho_i = 0.45$

Continuity recovered if number of poloidal turns is increased

Number of poloidal turns does not affect purely ITG driven s=0 simulation

Swiss
Plasma
Center

 $k_y \rho_i = 0.45$

EPFL Key linear results

So far the main takeaway from linear studies is that at low magnetic shear there can be a transition to slab ITG.

- The linear growth rate of toroidal ITG was strongly reduced by self-interaction unlike slab ITG;
- Slab ITG extends further along magnetic field lines;
- This transition could be very important for turbulent selfinteraction.

EPFL Nonlinear study

For s=0.1 we see a strong corrugation in the plasma profiles when compared to background gradients

EPFL Temperature gradients and auto-correlation

Plasma Center

Swiss

EPFL Temperature gradients and auto-correlation

EPFL Density gradients and auto-correlation

EPFL Electric field and auto-correlation

EPFL Radial Electric field well at the edge

EPFL Radial Electric field well at the edge

EPFL Effects of N_{pol} on corrugations

Number of poloidal turns N_{pol} has a large impact on profile corrugation due to reduction of self-interaction

EPFL

 $N_{pol} = 1$

Swiss Plasma Center

s=0.05

EPFL s=0 boundary

In the s=0 case

- Linear growth rates change slowly with q
- Periodic parallel boundary with a shift

EPFL Nonlinear simulations with adiabatic electrons

EPFL Nonlinear simulations with adiabatic electrons

Swiss Plasma Center Preliminary simulations with **kinetic electrons** also show sharp change with varying η but require further study

EPFL Key nonlinear results

Significant changes in the turbulent behaviour in simulations with low magnetic shear

- Strong stationary corrugations around low order rational surfaces that are comparable to the background profile gradients;
- We believe that this is a consequence of strong turbulent self-interaction in the parallel direction;
- Turbulent self-interaction seems to be stabilizing;
- Started comparisons between radial electric fields in the core with observed radial electric field wells at the plasma edge

Currently outstanding questions

EPFL s=0 long wavelength parallel wave

400

- 300

-200

- 100

- 0

-100

-200

-300

-400

-500

EPFL Radial particle flux

$$\Gamma(x) = \langle nv_r \rangle_{FS}$$

$$\Gamma(x) = - \langle \frac{c}{\tilde{C}} \frac{\partial \phi_1}{\partial y} M^{00}(\mathbf{x}) + \frac{1}{\tilde{C}} \frac{\partial A_{1,\parallel}}{\partial y} M^{01}(\mathbf{x}) \rangle_{FS}$$

References: Hauke Doerk, Gyrokinetic Simulation of Microtearing Turbulence, Universität Ulm, 2012

EPFL Radial particle flux

$$\Gamma(x) = \langle nv_r \rangle_{FS}$$

$$\Gamma(x) = - \langle \frac{c}{\tilde{C}} \frac{\partial \phi_1}{\partial y} M^{00}(\mathbf{x}) + \frac{1}{\tilde{C}} \frac{\partial A_{1,\parallel}}{\partial y} M^{01}(\mathbf{x}) \rangle_{FS}$$

References: Hauke Doerk, Gyrokinetic Simulation of Microtearing Turbulence, Universität Ulm, 2012

EPFL Summary

- Transition between slab and toroidal ITG modes in linear study identified;
- M4.1: Found strong plasma profile (i.e. ϕ_1 , ∇n_1 , ∇T_1) corrugations around rational surfaces for $\hat{s} \leq 0.1$;
- M4.1: Preliminary ITB simulations display a normalized E_r well that is comparable to experimental measurements in pedestal (pedestal E_r well is roughly 2 times narrower and 2 deeper);
- M4.1: Parallel correlation of turbulent eddies become much longer when $\hat{s} \leq 0.1$ and very long wavelength modes appear for $\hat{s} = 0$

Thank you for your attention

Swiss Plasma Center