

First insights into ITB physics

A progress report for TSVV1 workshop

Arnas Volčokas Justin Ball, Stephan Brunner

EPFL Outline

- Internal and edge transport barriers
- Internal transport barrier formation
- Milestones and deliverables
- Turbulent self-interaction
- Preliminary results:
	- Linear simulations
	- Nonlinear simulations
- Current work

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
- **ExB shearing flow**
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- **ExB shearing flow**
- Low or negative magnetic shear

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
	- **ExB shearing flow**
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- **ExB shearing flow**
- Low or negative magnetic shear

EPFL Internal and edge transport barriers

H-mode (edge transport barrier)

- Transport bifurcation
- Gradient steepening
- **ExB shearing flow**
- High magnetic shear

Internal transport barrier (ITB)

- Transport bifurcation
- Gradient steepening
- **ExB shearing flow**

Low or negative magnetic shear

Core region – easier to investigate numerically

- No coupling to scrape-off layer;
- Relatively simple geometry;
- Low collisionality;
- Low fluctuation levels;
- No neutrals.

EPFL ITB formation

- Low or negative magnetic shear \hat{s} is crucial;
- ITBs are often localized around rational *q*;
- Presence of **integer minimum** *q* seems to be especially favourable for ITB formation

Additionally:

• Heating power threshold

Swiss **Plasma Center**

References:

- K Ida and T Fujita 2018 Plasma Phys. Control. Fusion 60 033001
- J.W. Connor et al. 2004 Nucl. Fusion 44 R1
- X. Garbet et al. 2010 Nucl. Fusion 50 043002

B Swiss **Plasma Center**

EPFL

E Joffrin et al 2002 *Plasma Phys. Control. Fusion* **44** 1739 ⁸

B Swiss **Plasma Center**

EPFL

E Joffrin et al 2002 *Plasma Phys. Control. Fusion* **44** 1739 ⁹

The proposed plan has not changed substantially and we are on track, working towards the milestones.

Plasma Center

Internal transport barrier investigation in local gyrokinetic simulations

EPFL Turbulent self-interaction

On low order rational surfaces (q=2,2.5,3,…)

Magnetic field lines exactly close on themselves

Strong parallel self-interaction

Swiss **Plasma Center**

References:

- J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020

- Self-interaction alters fluctuation behaviour both linearly and non-linearly
- Turbulent self-interaction can be visualized **in real space as "eddy biting its own tail"**

Swiss **Plasma Center**

References:

- J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020

 $q = 2.5$

Swiss \mathbf{r} **Plasma Center**

Toroidal direction

Swiss Contract Plasma Center

 $q = 2.5$

Toroidal direction

Swiss Contract Plasma Center

Swiss The Co Plasma Center

Toroidal direction

 $q = 2$

Toroidal direction

Swiss The Co Plasma Center

Toroidal direction

EPFL Flux-tube

- Simulations using local fluxtube GENE code (Eulerian δf code)
- Twist and shift parallel boundary condition -> special radial locations

J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207

EPFL Flux-tube

- Simulations using local fluxtube GENE code (Eulerian δf code)
- Twist and shift parallel boundary condition -> special radial locations

J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207

EPFL Turbulent self-interaction

Drives ExB shear flow around rational surfaces

J. Dominski *et al.* 2015 *Physics of Plasmas* **22**, 062303

EPFL Turbulent self-interaction

EPFL ITB triggering

- Low magnetic shear important for ITB formation
- Integer (or low order rational) surfaces important for ITB formation
- Turbulent self-interaction strongest around rational surfaces
- Turbulent self-interaction seems to be stabilizing

Low magnetic shear + self-interaction = ITB ?

EPFL Preliminary study

- Linear low and zero shear simulations
- Nonlinear low and zero shear simulations
- Simulations with **kinetic electrons**
- Starting point Cyclone Base Case (CBC) parameters

We believe we observe **transition from toroidal to slab ITG mode** as magnetic shear approaches zero.

Swiss Plasma Center

 $k_{y}\rho_{i} = 0.45$

31

Slab ITG to toroidal ITG for purely ITG drive

Swiss Plasma Center

 $k_{y}\rho_{i} = 0.45$

Swiss

Plasma Center

Contract

With CBC drive discontinuity at s=0

Toroidal ITG growth rate reduced by self-interaction at s=0

Swiss Plasma Center

 $k_{y}\rho_{i} = 0.45$

Continuity recovered if number of poloidal turns is increased

Number of poloidal turns does not affect purely ITG driven s=0 simulation

Swiss Plasma Center

 $k_{y}\rho_{i} = 0.45$

35

EPFL Key linear results

So far the main takeaway from linear studies is that at low magnetic shear there can be a transition to slab ITG.

- The linear growth rate of toroidal ITG was strongly reduced by self-interaction unlike slab ITG;
- Slab ITG extends further along magnetic field lines;
- This transition could be very important for turbulent selfinteraction.

EPFL Nonlinear study

For s=0.1 we see **a strong corrugation in the plasma profiles** when compared to background gradients

EPFL Temperature gradients and auto-correlation

Plasma Center

Swiss

Contract

EPFL Temperature gradients and auto-correlation

 \mathbf{r}

EPFL Density gradients and auto-correlation

 \mathbf{r}

EPFL Electric field and auto-correlation

ш

EPFL Radial Electric field well at the edge

EPFL Radial Electric field well at the edge

Swiss Plasma Center

R. M. McDermott *et al.,* Phys. Plasmas 16, 056103 (2009)

 $\sim 10 \rho_i$

EPFL Effects of N_{pol} on corrugations

Number of poloidal turns N_{pol} has a large impact on profile corrugation due to reduction of self-interaction

EPFI

EPFL s=0 boundary

In the s=0 case

- Linear growth rates change slowly with q
- Periodic parallel boundary with a shift

EPFL Nonlinear simulations with adiabatic electrons

EPFL Nonlinear simulations with adiabatic electrons

Swiss Plasma Center

Preliminary simulations with **kinetic electrons** also show sharp change with varying η but require further study

EPFL Key nonlinear results

Significant changes in the turbulent behaviour in simulations with low magnetic shear

- Strong stationary corrugations around low order rational surfaces that are comparable to the background profile gradients;
- We believe that this is a consequence of strong turbulent self-interaction in the parallel direction;
- Turbulent self-interaction seems to be stabilizing;
- Started comparisons between radial electric fields in the core with observed radial electric field wells at the plasma edge

Currently outstanding questions

EPFL s=0 long wavelength parallel wave

 -400

 -300

 -200

 -100

 $\overline{}$

 -100

 -200

 -300

 -400

 -500

EPFL Radial particle flux

$$
\Gamma(x) = \langle nv_r \rangle_{FS}
$$

$$
\Gamma(x) = -\langle \frac{c}{\tilde{C}} \frac{\partial \phi_1}{\partial y} M^{00}(\mathbf{x}) + \frac{1}{\tilde{C}} \frac{\partial A_{1,\parallel}}{\partial y} M^{01}(\mathbf{x}) \rangle_{FS}
$$

References: Hauke Doerk, Gyrokinetic Simulation of Microtearing Turbulence, Universität Ulm, 2012

EPFL Radial particle flux

$$
\Gamma(x) = \langle nv_r \rangle_{FS}
$$

$$
\Gamma(x) = -\langle \frac{c}{\tilde{C}} \frac{\partial \phi_1}{\partial y} M^{00}(\mathbf{x}) + \frac{1}{\tilde{C}} \frac{\partial A_{1,||}}{\partial y} M^{01}(\mathbf{x}) \rangle_{FS}
$$

References: Hauke Doerk, Gyrokinetic Simulation of Microtearing Turbulence, Universität Ulm, 2012

EPFL Summary

- Transition between slab and toroidal ITG modes in linear study identified;
- M4.1: Found strong plasma profile (i.e. ϕ_1 , ∇n_1 , ∇T_1) corrugations around rational surfaces for $\hat{s} \leq 0.1$;
- M4.1: Preliminary ITB simulations display a normalized E_r well that is comparable to experimental measurements in pedestal (pedestal E_r well is roughly 2 times narrower and 2 deeper);
- M4.1: Parallel correlation of turbulent eddies become much longer when $\hat{s} \leq 0.1$ and very long wavelength modes appear for $\hat{s} = 0$

Thank you for your attention

Swiss **Contract Plasma Center**