

Gyrokinetic simulations of AUG H-mode, validation & recent advancements

T. Görler

TSVV1 Progress Workshop 2021 21-22 October, 2021, Virtual Meeting

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014- 2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Characterization of an ELM-free ASDEX Upgrade H-mode (K. Stimmel) → M1.3-1.4: "Mode characterization, Single-Scale Simulations"

• Recent progress on the validation front

→ M1.5: Validation against as many experiment measurements as possible

A new dilution model in GENE

→ Possibly facilitating M1.3-M1.5/D1.1 achievements

Gyrokinetic investigation of AUG ELM-Free H-mode #36330

Acknowledgments:

Karl Stimmel (lead investigator), L. Gil, D. Told, M. Cavedon, P. David, M. Dunne, R. Dux, R. Fischer, P. Lauber, A. Kallenbach, F. Jenko, R.M. McDermott, U. Plank, G. Tardini and the ASDEX Upgrade Team

Discharge overview AUG 36330

- **Motivation**
	- Originally inspired by ECRH ELM-free discharges
		- **Lacked reliable Ti measurements at the time; NBI is required**
	- Well diagnosed ion temperatures, and recently outlined in Kallenbach et al. 2021
- Characteristics
	- Lower single null, favorable ∇B
	- **ELM free** for a few hundred ms from \sim 6 6.2 s
	- \degree ~2.5 MW ECRH, 2.5 MW NBI heating
- Approach
	- Linear/Nonlinear/neoclassical local simulations for radial positions
	- 1 Global electrostatic simulation over the pedestal
	- \circ ExB consistently input from well diagnosed E_{rad} measurement

Discharge overview AUG 36330

 \cdot The 4 radial positions chosen for local simulation

Oct 21-22, 2021 | Page 5

Linear characterization

2-species linear local scan:

- core characterized as ITG dominated
- pedestal is more complex-ETG/TEM-like dominated

Linear characterization – Argon impact

T. Görler et al. 10^0 10^2

(d) $\rho_{\rm tor} = 0.95$

r. profile 1 Ar. profile 2

 10° 10

 $10⁰$

 10^-

 γ [c $_{\rm s}$ /a]

- 3-species (deuteron, electron, argon ion) linear scans also included
	- Ar. profile 1 is realistic profile, Ar. profile 2 is artificial flat profile to probe effect of argon
- Ion-scale physics captured by two species, but electron scale requires inclusion of argon

- Inclusion of argon is not simply higher or lower growth rate
	- Balance between effect on density gradient (increase heat growth rate) and argon inclusion (tends to decrease growth rate)
	- confirmed nonlinearly

Nonlinear local

- Extensive nonlinear local simulations performed
- Core simulations match heat flux, pedestal sims do not without global effects
- Ar profile 1 increases heat flux due to gradient increase, while argon profile 2 decreases heat flux since gradient is unchanged

Global simulations

- Using simply toroidal velocity from core in pedestal is incorrect
- Including a realistic velocity profile reduces heat flux
- Global EM would likely correct discrepancy but is left to future work due to computational cost
- Challenges with pedl. 3 species (comp. cost)
- QCM not clearly observed in any simulations yet

- **Linear characterization** of **core ITG**, **pedestal ETG/TEM**
- Nonlinear **core simulations reproduce experimental heat fluxes**
- **Global simulations correct** local heat flux **overprediction** at pedestal top
- Quasicoherent mode (QCM) not observed, global nonlinear EM or crossing separatrix $(\rightarrow$ TSVV4) may be necessary
- Current work written in manuscript to be submitted to JPP soon
- **Additional analysis** (not shown): linear collisionality, beta scan, quasilinear analysis
- **Future challenges/goals:**
	- Global nonlinear EM simulation
	- 3 species in pedestal
	- Approaching or crossing separatrix (challenging to also get experimental data)

Validation in ASDEX Upgrade Hydrogen & Deuterium L-mode plasmas

Acknowledgments:

P. Molina Cabrera^{2,1*}, P. Rodriguez Fernandez¹, M. Bergman², R. Bielajew¹, G. D. Conway², K. Höfler^{3,2}, C. Yoo¹, A. E. White¹, and the ASDEX Upgrade team

¹Plasma Science and Fusion Center, MIT Cambridge MA, United States ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ³Physics Department, Technical University Munich, Garching, Germany

Plasma scenario description

- Keep shape, I_P , n_e , and P_{ext} (ECRH) constant and change ion mass.
	- Te, Ti profiles to evolve differently
- Color scheme:
	- Hydrogen = BLUE
	- Deuterium = RED

Profiles and fits with IDA Markov Chain/Monte-Carlo (MCMC)

Region of Interest (ROI) where turbulence measurements are available ρ_T $0.65 - 0.8$

IPP

dTe/Te and nT-crossphase diagnostics

- Electron cyclotron emission ECE allows T_e measurements
- Correlation ECE focus on T_e fluctuations down to 0.1% using cross-correlation
- Measure $dT_e/T_e(f)$, $dT_e/T_e(rms)$, L_{rc} at $k_{\theta}\rho_{\text{s}}$ < 0.4
- AUG has a 24-ch CECE $[1,2]$

• Couple reflectometer and CECE into same volume: cross-phase between δn_e and δT_e

[1] Creely et al., Rev of Sci Instr 89, 053503 (2018) [2] Freethy et al., Phys. Plasmas 25, 055903 (2018) [2] Freeiny et al., Physics of Plasmas 20, 056115 (2013)
[3] Hillesheim J., Physics of Plasmas 20, 056115 (2013) [4] Whie A. E., Phys. Plasmas 17, 056103 (2010)

Linear characterization at t=2.45s, $\rho_{\text{tor}} = 0.75$

- Robust ITG on low-*k* ionscales and ETG on electron scales for both plasmas
- \cdot a/ L_{Ti} main driver on ionscales
- Deuterium shows possible transition to dominant TEM at medium-*k* for multiple gradient variations
- Overall ITG/ETG growth rates smaller/larger from H-to-D
- All sims performed with revised IDE equilibria

Nonlinear flux-matching attempts

- **Additional scans included above:** increased a/L_{Te} , increased/decreased a/L_n , increased ExB shear, 2-species vs. 3-species, increased Z_{eff} (only H)
- Electron heat flux (more relevant to CECE?) well matched while ion heat flux requires **lots of variations**

GENE synthetic diagnostics

- Interpolate GENE flux-tube data to finegrained, equidistant time steps
- Apply phase factor for translation from comoving to lab frame
- Map flux-tube to cylindrical coordinates and extract poloidal cross-section
- Apply spatio (-temporal) filters best matching the diagnostics specifications
- New: Split coordinate mapping (IDL) and filter application (Python) for improved flexibility

Comparing CECE with GENE

- Found strong impact of background v_{Tor} in H
	- DBS closer to experiment
- GENE $dT_e/T_e(f)$ features power in higher frequencies not found in CECE
- Radial correlations agree within fit uncertainty in both

Comparing nT cross-phase with GENE

- **Agreement inside error bars** for both species
- **GENE recovers experimental decrease** in nT cross-phase in H and D

Validation results so far

Gradient scans have brought all quantities within 2 sigma. Qi hardest to match, so faret al. | TSVV1 workshop | Oct 21-22, 2021 | Page 20

Conclusion AUG L-mode validation

● **Significant fluctuation properties changes** observed between H/D:

 dT_e/T_e (D) > $dT_e/T_e(H)$ L_{rc} (D) > L_{rc} (H) α_{nT} (D) > α_{nT} (H)

- All trends recovered by GENE agreement in D between GENE and CECE with new antenna greatly improved from ~66% mismatch reported by Freethy, Görler et al. in 2018 to 25%
- **Ion heat flux overestimated** by GENE (but also TGLF) Could be specific to these shots. Model physics or improve profile fit(s)?
- **Next step:** Move from outer-core to very edge (rtor~0.925) \rightarrow larger T_i uncertainties, detailed error estimates needed / on-going
- **Further AUG validation:** On-going outer-core comparison for **AUG turbulence reference discharge** incl. ECRH scan **→** edge application further delayed due to unforeseen unavailability of key experimentalists

A dilution model in GENE

● **Traditionally not considered**

- ➔ usually, multi-species treatment quite feasible for core treatment
- ➔ 'dangerous' assumption, ions with dynamical effects on bulk ions (e..g., similarities with bulk ions, or resonant fast ions) [Estrada-Mila 2005, Holland 2012, Di Siena 2018], significant impurity transport
- **Situation changes for non-resonant, insignificant transport impurities**
	- ➔ **capture main effect (dilution) w/o solving GK equation for species may reduce overall computational time dramatically**
	- ➔ **relevant to global simulation, local edge simulations (high resolution) and large parameter scans.**

● **Possible choices:**

- \rightarrow Keep only 'true' equilibrium effects (e.g., total pressure gradient) and set, e.g., $n_1=0$
- ➔ Same as above but assume adiabatic response of dilution species
- \rightarrow Same as above but assume f₁=0 only, i.e. keep, for instance, polarization density in Poisson's equation

T. Görler et al. | TSVV1 workshop | Oct 21-22, 2021 | Page 24

A dilution model in GENE

● **Possible choices:**

- \rightarrow Keep only 'true' equilibrium effects (e.g., total pressure gradient) and set, e.g., $n_1=0$
- ➔ Same as above but assume adiabatic response of dilution species
- \rightarrow Same as above but assume f₁=0 only

 \rightarrow Remarkably good agreement for 3rd option \rightarrow saves 1/3 of runtime

Conclusions

Summary

- Mode and turbulence characterization in Ar-seeded ELM-free AUG H-mode (K. Stimmel)
	- Core heat fluxes matched with local simulations, global simulations in ballpark for pedestal turbulence
	- M1.3-1.4: "Mode characterization, Single-Scale Simulations" largely fulfilled for this scenario, refinements required

● **Validation against AUG L-mode isotope scan**

- Trends captured, good agreement in cross-phases and radial correlation lengths, improved agreement in cross-power spectra
- Application to very-edge on-going, similarly foreseen for AUG turbulence reference discharge
- $-$ M1.3-M1.4+validation (M1.5) largely addressed \rightarrow very-edge application needed for fulfillment
- **New dilution model in GENE**

Thank you for your attention!

- Dilution species feature now available
- T. Görler et al. | TSVV1 workshop | Oct 21-22, 2021 | Page 26 – May provide access to wider parameter space for dynamically insignificant impurities

APPENDIX

T. Görler et al. | TSVV1 workshop | Oct 21-22, 2021 | Page 27

● **Various approaches to profile fitting at AUG**

- **IDA[1] takes an integrated approach taking into consideration many diagnostics**
	- Standard available after every discharge may feature large variations in the profile gradients.
	- Error bars are not indicative of profile uncertainty but rather disparity between diagnostics.
- **IDA-MCMC** [2] is a more complete sampling of error/fit distribution function, however, very **time intensive**
	- Depending on quality of data number of spline points can also lead to large 'oscillations' in the profile gradients
	- For this study, used a 8 spline points. Chosen rather arbitrarily, so there's room to improve.

[1] Weisen H, et al. 2020, Journal of Plasma Physics 86 905860501 [2] R. Fischer et al. 2020. Fusion Science and Technology Vol 76, 879-894

Backup: linear scans

Backup

Backup

Some challenges on the way to edge/pedestal ...

● **Strongly shaped and varying geometry**

➔ appropriate configuration space discretization / choice of coordinates

- ➔ X-point treatment? (outlook at end)
- **3D effects**

• Steep gradients in density and temperature profiles

- ➔ strongly driven turbulence, electromagnetic modes
- ➔ velocity space discretization challenging
- \rightarrow low temperatures \leftrightarrow collisionality relevance

● **Global effects and eventually Breakdown of gyrokinetics?**

- ➔ *here: take gyrokinetics to extreme & check performance a posteriori* (similar to quasilinear transport modeling)
- ➔ studies in astrophysics sometimes find breakdown much later than usually expected [D. Grošelj et al., ApJ 847, 28 (2017)]

CECE comparisons in AUG L-mode (D/H)

• $\delta T_e/T_e$ (currently) overestimated but much better agreement than previous work

Sensitivity to toroidal rotation

- Toroidal velocity *vtor* (inferred from DBS) has important role in formation of CECE spectral shape
- In first iteration, rotation induced by beam blips had not been considered