DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

DEVELOPPMENT OF A BUFFER ZONE IN ORB5

P. Donnel, G. Di Giannatale, L. Villard,

X. Garbet, R. Varennes, L. Vermare,

ID	Milestone/Deliverable - description	Target date
M2.6	Implementation of a limiter like boundary condition in the global code ORB5, comparison with GYSELA	12/2021
M2.9	Study the development of a radial electric field in response to key parameters such as injected power, collisionality and safety factor, using the GYSELA and ORB5 codes including simplified limiter/SOL - comparison with fluid code results	06/2022
M2.14	Compare numerical electric field obtained with GK to experimental ones in limited plasmas	12/2022
D2.6	GK simulations of edge electric field development in a limited plasma and comparison with experiments	12/2022

- The plasma domain is extended and a damping of fluctuations is applied in the outer buffer
- No poloidal asymmetry
- No modification of QN equation
- Flat density and temperature profiles are assumed in the buffer area
- For MHD equilibrium: No current in the buffer

Cea Three options for the buffer zone

• Naive Krook

$$\frac{\partial}{\partial t}(\delta F) = -\mathbf{v}(s)\delta F$$

• Krook conserving particles:

$$\frac{\partial}{\partial t}(\delta F) = -\mathbf{v}(s)\delta F + \mathbf{C}(s)$$

with C (s) is a scalar chosen to conserve $\int \delta F d^3 v$ over spatial bins

Collisionnal buffer

 $\frac{\partial}{\partial t}(F) = \mathbf{v}(s)\hat{C}(F, F_{init})$ (Handled via Langevin kicks)

In all cases,

$$v(s) = v_0 \left(\frac{s - s_{buf}}{s_{max} - s_{buf}}\right)^2$$
 if $s > s_{buf}$

where $s = \sqrt{\psi}$

Cea Hybrid e- + collision + ECRH + shaping

P. Donnel, TSVV1 progress meeting, 21/10/2021

EURO*fusion*

EPFL

Important effect of time on the buffer ~07 potential, less for core potential

P. Donnel, TSVV1 progress meeting, 21/10/2021

EUROfusion

EPF

Ceal Limited impact of the source level

- Flux-driven, global GK simulations of shaped plasmas in presence of collisions have been performed for the first time with ORB5
- Improved confinement of negative triangularity retrieved (only when including trapped kinetic electrons and collisions)
- Important impact of shaping on the development of the radial electric field
- Limited impact of the source amplitude (in this case)
- Difficulty to reach a quasi-steady state
- Necessity to improve the boundary condition

- Study the impact of numerical parameters (type, v_0 , s_{buf}) in adiabatic electrons simulations (see Giovanni's presentation), then with hybrid electrons
- Study the impact of physical parameters (power, collisionality, gradients, magnetic geometry...) on the development of the electric field
- Comparison between ORB5 and GYSELA results
- Improvement of the buffer model :
 - limiter like for adiabatic e- (GYSELA)
 - type of buffer for FD simulations with hybrid e-? (PhD in the GYSELA team)
- Comparison gyrokinetic simulation vs experiments

Cea Zoom on the energy decaying rate

(C) EUROfusion

EPFL

Cea Particle confinement time

