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1. The non-twisting flux tube


2. Further generalizations beyond the non-twisting flux tube


3. Including non-uniform magnetic shear in a flux tube

Outline
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J. Ball and S. Brunner. PPCF (2021).



The non-twisting flux tube



• The non-twisting flux tube is created by laying down a rectangular grid 

, instead 


• Prioritizes including Fourier modes with minimal FLR damping, instead 
of prioritizing following linear modes


• Nothing physical has changed

Kx = kx + ky
∇x ⋅ ∇y
|∇x |2 kx

Summarizing the non-twisting flux tube
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J. Ball and S. Brunner. PPCF (2021).
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z

Kxρi

• Boundary conditions determine an infinite lattice of allowed Fourier modes 

according to either  or  where 


• These are the same physical perturbations, just labeled differently

kx =
2π
Lx

m Kx =
2π
Lx

m + ky
∇x ⋅ ∇y
|∇x |2 m ∈ ℤ

Non-twisting flux tube is a different set of gridpoints
J. Ball and S. Brunner. PPCF (2021).
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z

Kxρi

z

Kxρi

Conventional Non-twisting

• Boundary conditions determine an infinite lattice of allowed Fourier modes 

according to either  or  where 


• These are the same physical perturbations, just labeled differently

kx =
2π
Lx

m Kx =
2π
Lx

m + ky
∇x ⋅ ∇y
|∇x |2 m ∈ ℤ

Non-twisting flux tube is a different set of gridpoints
J. Ball and S. Brunner. PPCF (2021).



• Most helpful for multiple regions of turbulent drive, e.g. tokamaks with 
, H-mode pedestals, stellarators


• Prioritizes including Fourier modes with minimal FLR damping


• Not harmful

Npol > 1

Takeaways from runtime tests
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Parisi et al. In prep. (2021).
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ϕ
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kx
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Generalizations of the 
non-twisting flux tube



Boundary conditions define allowed Fourier modes

9

z

Kxρiky=1ky,min

z

Kxρiky=2ky,min

z

Kxρiky=3ky,min

z

Kxρiky=4ky,min
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z

Kxρiky=2ky,min

z

Kxρiky=1ky,min

z

Kxρiky=3ky,min

z

Kxρiky=4ky,min

Can choose points freely with different transformations
  that varies with Ly z



11

Can choose points freely with different transformations
Uniform radial grid in θ0 ≡ kx /(ky ̂s)

z

Kxρiky=2ky,min

z

Kxρiky=3ky,min

z

Kxρiky=1ky,min

z

Kxρiky=4ky,min
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Can choose points freely with different transformations

Completely control twist with  z

z

Kxρiky=3ky,min

z

Kxρiky=2ky,min

z

Kxρiky=1ky,min

z

Kxρiky=4ky,min



• Practical limitations due to terms that cause mode coupling:


• Nonlinear term — need evenly-spaced grid for efficient calculation 
in real space


• Potential to greatly benefit multi-scale simulations or pedestal 
simulations with weird turbulence?

Limitations on generalization of the flux tube
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Ball et al. PPCF (2021).



Flux tubes with 
non-uniform 

magnetic shear

Work in progress!



• Turbulence-scale variation (~10ρi) in the  profile can be created by:


1. ECCD can provide a localized current source and the  
profile evolves on the very slow resistive diffusion timescale 

2. The bootstrap current in the pedestal


• Order this source  such that it appears in the GK 
equation, but then perform a subsidiary expansion in  to make 
the resistive diffusion timescale of the source asymptotically slow


• Thus,  within the flux tube can be considered fixed in the GK calc.

̂s

q

S̃Ip ∼ νρ*ωFs
ν ≪ 1

̂s

Consistency with gyrokinetic orderings
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https://www.greeksymbols.net/rho-symbol


• Instead of just the standard linear dependence , we want to add


 


1. In the non-twisting derivation, magnetic shear only appears in 
the parallel streaming term, so simply replace  

2. Include a steady, external  perturbation arising from the 
resistive diffusion timescale equations


3. Use standard coordinate  without new shear variation, 
causing the  term to persist in parallel streaming

̂sx

s̃(x) =
jm

∑
j=1

s̃Cj cos (2πjx /Lx) + s̃Sj sin (2πjx /Lx)

̂sx → ̂sx + s̃(x)

Aext
|| (x, z)

y |s̃(x)=0
b̂ ⋅ ∇y |s̃(x)=0

How to include non-uniform magnetic shear
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• Surprisingly simple form in Fourier-space





                                                                  


• Straightforward to implement, likely at little computational cost

∂hs

∂z
kx,ky

→
∂hs

∂z
kx,ky

+
ky

2

jm

∑
j=1

Lx

2πj (s̃Cj + is̃Sj) hs (Kx +
2π
Lx

j, ky, z)
−(s̃Cj − is̃Sj) hs (Kx −

2π
Lx

j, ky, z) + …

Implementation in GENE
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First proof-of-principle simulations
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Moves integer surfaces of flux tube as expected
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Temperature profile modified, but not as expected
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All done.

This work has been carried out within the framework of the 
EUROfusion Consortium and has received funding from the Euratom 
research and training programme 2014-2018 and 2019-2020 under 

grant agreement No 633053. The views and opinions expressed herein 
do not necessarily reflect those of the European Commission.



Motivation for the flux tube
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Beer et al. Phys. Plasmas (1995).

• Crucial to minimize computational 
cost as much as possible


• Flux tube simulation domain 
exploits the scale separation 
assumed by gyrokinetics,   




• Field-aligned coordinates minimize 
the volume of the simulation domain 
by reflecting the shape of turbulence


• Boundary conditions are elegant (i.e. 
periodicity)

ρi /a ≪ 1

q(x) ≈ q0 (1 + ̂s
x − x0

x0 )

x

y

z



Motivation for the flux tube
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Beer et al. Phys. Plasmas (1995).

q(x) ≈ q0 (1 + ̂s
x − x0

x0 )

• Crucial to minimize computational 
cost as much as possible


• Flux tube simulation domain 
exploits the scale separation 
assumed by gyrokinetics,   




• Field-aligned coordinates minimize 
the volume of the simulation domain 
by reflecting the shape of turbulence


• Boundary conditions are elegant (i.e. 
periodicity)

ρi /a ≪ 1

What’s the issue?

x

y

z



Motivation for the flux tube

24

Beer et al. Phys. Plasmas (1995).

q(x) ≈ q0 (1 + ̂s
x − x0

x0 )

̂s → 2 ̂s• Crucial to minimize computational 
cost as much as possible


• Flux tube simulation domain 
exploits the scale separation 
assumed by gyrokinetics,   




• Field-aligned coordinates minimize 
the volume of the simulation domain 
by reflecting the shape of turbulence


• Boundary conditions are elegant (i.e. 
periodicity)

ρi /a ≪ 1



Motivation for the flux tube
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Beer et al. Phys. Plasmas (1995).

q(x) ≈ q0 (1 + ̂s
x − x0

x0 )

Ball et al. JPP (2020).

Npol = 3• Crucial to minimize computational 
cost as much as possible


• Flux tube simulation domain 
exploits the scale separation 
assumed by gyrokinetics,   




• Field-aligned coordinates minimize 
the volume of the simulation domain 
by reflecting the shape of turbulence


• Boundary conditions are elegant (i.e. 
periodicity)

ρi /a ≪ 1



x
ζ

x
ζ

x
ζ

constantx =
constanty =

Motivation for a non-twisting flux tube
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• When , the conventional flux tube becomes so twisted 
that it only supports modes that are strongly damped by FLR effects


• “Shifted metric” approach has been developed, but could not be 
applied to the standard flux tube domain (i.e. periodic radial 
boundary condition and with a Fourier representation)


• In this talk, we will show how it can be done

2πNpol ̂s ≫ 1

Scott et al. Phys. Plasmas (2001).
Told et al. Phys. Plasmas (2010).



x
ζ

x
ζ

x
ζ

constantx =
constanty =
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∇x ⋅ ∇y = 0 ∇x ⋅ ∇y ≠ 0 ∇x ⋅ ∇y ≫ 1

• Define a new coordinate  such that , so use


 

Y ∇x ⋅ ∇Y = 0

Y(x, y, z) ≡ y −
∇x ⋅ ∇y
|∇x |2 x

Scott et al. Phys. Plasmas (2001).
Coordinate system transformation



Coordinate system transformation
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• Key new insight is to transform the boundary conditions consistently 
and then use them to find the allowed modes in Fourier-space


• Instead of the typical , we find





• To make non-twisting flux tube in Fourier-space, construct a 
rectangular grid in  instead of 

kx =
2π
Lx

m

Kx =
2π
Lx

m + ky
∇x ⋅ ∇y
|∇x |2 where m ∈ ℤ

Kx kx

Ball et al. PPCF (2021).



Physical meanings of  and kx Kx
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Kx = 0kx = 0

If you trace the perturbation back along field 
lines to , has no variation in  z = 0 ∇x

Has no variation in   
at all  locations 

∇x
z

⃗∇ x

⃗∇ x

⃗∇ x

⃗∇ x

⃗∇ x

⃗∇ x



   


                


1. The parallel derivative must still be taken at constant  


2. The geometric coefficients lose their secular dependence along the field line:


 


Conventional grid prioritizes following linear modes, while non-twisting grid 
minimizes FLR damping

∂hs

∂t
+ w||b̂ ⋅ ∇z

∂hs

∂z
Kx−ky

∇x ⋅ ∇y
|∇x |2

+ i ⃗v ds ⋅ (Kx ∇x + ky ∇Y) hs + as||
∂hs

∂w||

+{h′�s, ϕ′�′�J0 (K′�′�⊥ρs)} =
ZseFMs

Ts

∂ϕ
∂t

J0 (K⊥ρs) − i
ky

JB
ϕJ0 (K⊥ρs)

dFMs

dx

kx = Kx − ky
∇x ⋅ ∇y
|∇x |2

k⊥ = k2
x |∇x |2 + 2kxky ∇x ⋅ ∇y + k2

y |∇y |2 → K⊥ = K2
x |∇x |2 + k2

y |∇Y |2

Transforming the Fourier-analyzed gyrokinetic eq.
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⇒
∝ ̂sz ∝ ( ̂sz)2



CBC with adiabatic electrons and ̂s = 0.8
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• Similar convergence and run time

Non-twisting
Conventional

Dimits et al. Phys. Plasmas (2000).



CBC with adiabatic electrons, , ̂s = 0.8 Npol = 3

32

 0

 1

 2

 3

 4

 5

 6

 32  64  128  256  512
 0

 0.5

 1

 1.5

 2

 2.5

 3
Io

n
 h

e
a
t 

fl
u
x
 (

Q
g

B
)

S
p
e
e
d
-u

p

Nx

• Time step is much larger due to elimination of small radial scales
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Conventional
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|ϕ |Non-twisting:

Conventional:

z z z

z z z

• Cyclone base case in a domain that is three poloidal turns long

New choice of gridpoints can better fit turbulence
Dimits et al. Phys. Plasmas (2000).
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• Inboard is better resolved by non-twisting flux tube, but little flux there
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• Non-twisting flux tube is >30x faster than conventional

Non-twisting
Conventional

CBC with adiabatic electrons, , ̂s = 4.0 Npol = 3



Transforming real space boundary conditions
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Beer et al. Phys. Plasmas (1995).

• Using , the binormal boundary condition stays boring





• The radial boundary condition becomes interesting 




• Using ,  the parallel “twist-and-shift” boundary condition 
becomes boring 

            
          

Y (x, y, z) = y + ̂szx

ϕ(x, Y(x, y + Ly, z), z) = ϕ(x, Y(x, y, z), z), z) ⇒ ϕ(x, Y + Ly, z) = ϕ(x, Y, z)

ϕ(x + Lx, Y(x + Lx, y, z), z) = ϕ(x, Y(x, y, z), z) ⇒ ϕ(x + Lx, Y + ̂szLx, z) = ϕ(x, Y, z)

Y (x, ζ, z) = Cyζ − Cyq0z

ϕ(x, Y(x, ζ, z + 2πNpol), z + 2πNpol) = ϕ(x, Y(x, ζ, z), z)
⇒ ϕ(x, Y, z + 2πNpol) = ϕ(x, Y, z)



Transforming radial Fourier-space boundary cond.
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• Substituting  from the binormal boundary condition,





• By Floquet’s theorem, substitute  to find


 


• Thus,  has a standard Fourier form/discretization in , implying that


    and    

ϕ(x, Y, z) = ∑
ky

̂ϕ(x, ky, z)eikyY

ϕ(x + Lx, Y + ̂szLx, z) = ϕ(x, Y, z) ⇒ ̂ϕ(x + Lx, ky, z)eiky ̂szLx = ̂ϕ(x, ky, z)

̂ϕ(x, ky, z) = P(x, ky, z)e−iky ̂szx

P(x + Lx, ky, z) = P(x, ky, z)

P(x, ky, z) x

Kx =
2π
Lx

m − ky ̂sz where m ∈ ℤ ϕ(x, Y, z) = ∑
Kx,ky

ϕ(Kx, ky, z)eiKxx+ikyY



• Fourier analyzing using  gives





• Substituting  allows you to Fourier analyze in ,





• Calculate parallel deriv. in  or by holding  constant

hs(x, Y, z) = ∑
Kx,ky

hs(Kx, ky, z)eiKxx+ikyY

∂hs

∂t
+

w||b̂ ⋅ ∇z
LxLy ∮ ∮ dxdYe−iKxx−ikyY

∂
∂z

x,y
∑
K′ �x,k′�y

hs(K′ �x, k′�y, z)eiK′ �xx+ik′�yY + i ⃗K ⊥ ⋅ ⃗v dshs + …

Y = y + ̂szx y

∂hs

∂t
+

w||b̂ ⋅ ∇z
Lx ∮ dxe−i(Kx+ky ̂sz)x ∂

∂z
x,ky

∑
K′�x

hs(K′�x, ky, z)ei(K′�x+ky ̂sz)x + i ⃗K ⊥ ⋅ ⃗v dshs + …

(x, ky) kx = Kx + ky ̂sz
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Transforming the gyrokinetic equation
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• Time step is now limited by shear Alfvén wave, even when β ≠ 0

Non-twisting
Conventional
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• Significant, direct computational speed-up

Non-twisting
Conventional

CBC with adiabatic electrons and ̂s = 4.0
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• Inboard is better resolved by non-twisting flux tube, but little flux there

Non-twisting
Conventional

Nx = 256
Nx = 128
Nx = 64

z/π

CBC with adiabatic electrons and ̂s = 4.0



• It is straightforward to completely control the flux tube twist using


        and       


where

Y (x, y, z) = y + ftw(z)x Kx ≡ kx − ky ftw(z)

Alternative twisting flux tubes
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Watanabe et al. Phys. Plasmas (2015).

ftw(z) = 0
ftw(z) = ̂sz

Conventional:

Globally non-twisting:

ftw(z) = − ∇x ⋅ ∇y/ |∇x |2

ftw(z) = 2π ̂sRound[z /(2π)]
Non-twisting:

Flux tube train:



• Potential applications


• Coarsen grid at intermediate scales in multiscale simulations


• Better adapt grids to local conditions in 


• Prevent linear modes from being clustered around zero ballooning 
angle in conventional flux tube


• Better optimize the twist of the flux tube cross-section

z

Alternative twisting flux tubes
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