Reimagining the flux tube for the tokamak edge

Justin Ball and Stephan Brunner

Swiss Plasma Center, EPFL

TSVV1 Progress Workshop 21 October 2021

Outline

J. Ball and S. Brunner. *PPCF* (2021).

- 1. The non-twisting flux tube
- 2. Further generalizations beyond the non-twisting flux tube
- 3. Including non-uniform magnetic shear in a flux tube

The non-twisting flux tube

Summarizing the non-twisting flux tube

J. Ball and S. Brunner. *PPCF* (2021).

- The non-twisting flux tube is created by laying down a rectangular grid $K_x = k_x + k_y \frac{c}{\sqrt{1 - k_x^2}}$, instead ∇*x* ⋅ ∇*y* $|\nabla x|$ $\frac{3}{2}$, instead k_{χ}
- Prioritizes including Fourier modes with minimal FLR damping, instead of prioritizing following linear modes
- Nothing physical has changed

Non-twisting flux tube is a different set of gridpoints J. Ball and S. Brunner. *PPCF* (2021).

- Boundary conditions determine an infinite lattice of allowed Fourier modes according to either $k_x = \frac{m}{I} m$ or $K_x = \frac{m}{I} m + k_y \frac{m}{l} \frac{m}{l}$ where 2*π* $L_{\rm \scriptscriptstyle X}$ m or $K_{\chi} =$ 2*π* $L_{\rm \scriptscriptstyle X}$ $m+k_{\rm y}$ ∇*x* ⋅ ∇*y* $|\nabla x|$ $\frac{1}{2}$ where $m \in \mathbb{Z}$
- These are the same physical perturbations, just labeled differently

Non-twisting flux tube is a different set of gridpoints J. Ball and S. Brunner. *PPCF* (2021).

- Boundary conditions determine an infinite lattice of allowed Fourier modes according to either $k_x = \frac{m}{I} m$ or $K_x = \frac{m}{I} m + k_y \frac{m}{l} \frac{m}{l}$ where 2*π* $L_{\rm \scriptscriptstyle X}$ m or $K_{\chi} =$ 2*π* $L_{\rm \scriptscriptstyle X}$ $m+k_{\rm y}$ ∇*x* ⋅ ∇*y* $|\nabla x|$ $\frac{1}{2}$ where $m \in \mathbb{Z}$
- These are the same physical perturbations, just labeled differently

Conventional Non-twisting

7

Takeaways from runtime tests

Parisi et al. *In prep.* (2021).

- Most helpful for multiple regions of turbulent drive, e.g. **tokamaks with** $N_{pol}>1$, <mark>H-mode pedestals</mark>, stellarators
- Prioritizes including Fourier modes with minimal FLR damping
- Not harmful

Generalizations of the non-twisting flux tube

Boundary conditions define allowed Fourier modes

Can choose points freely with different transformations

Can choose points freely with different transformations

Can choose points freely with different transformations

Completely control twist with *z*

Limitations on generalization of the flux tube

Ball et al. *PPCF* (2021).

- Practical limitations due to terms that cause mode coupling:
	- Nonlinear term $-$ need evenly-spaced grid for efficient calculation in real space
- Potential to greatly benefit multi-scale simulations or pedestal simulations with weird turbulence?

Flux tubes with non-uniform magnetic shear **Workess!**

Consistency with gyrokinetic orderings

- Turbulence-scale variation $(\sim 10\rho_i)$ in the \hat{s} profile can be created by:
	- **1. ECCD can provide a localized current source and the** *q* **profile evolves on the very slow resistive diffusion timescale**
	- 2. The bootstrap current in the pedestal
- Order this source $\tilde{S}_{lp}\thicksim \nu\rho_*\omega F_{_S}$ such that it appears in the GK equation, but then perform a subsidiary expansion in $\nu \ll 1$ to make the resistive diffusion timescale of the source asymptotically slow
- Thus, \hat{s} within the flux tube can be considered fixed in the GK calc.

How to include non-uniform magnetic shear

 \cdot Instead of just the standard linear dependence $\hat{s}x$, we want to add ̂

$$
\tilde{s}(x) = \sum_{j=1}^{j_m} \tilde{s}_{Cj} \cos(2\pi jx/L_x) + \tilde{s}_{Sj} \sin(2\pi jx/L_x)
$$

- **1. In the non-twisting derivation, magnetic shear only appears in** the parallel streaming term, so simply replace $\hat{s}x \to \hat{s}x + \tilde{s}(x)$ ̂
- 2. Include a steady, external $A_{||}^{ext}(x,z)$ perturbation arising from the resistive diffusion timescale equations
- 3. Use standard coordinate $y\left|_{\mathfrak{F}(x)=0}\right.$ without new shear variation, causing the $b\cdot\nabla y\big|_{\tilde{s}(x)=0}$ term to persist in parallel streaming $\tilde{s}(x)=0$ $\tilde{s}(x)=0$

Implementation in GENE

• Surprisingly simple form in Fourier-space

$$
\frac{\partial h_s}{\partial z}\Big|_{k_x,k_y} \to \frac{\partial h_s}{\partial z}\Big|_{k_x,k_y} + \frac{k_y}{2}\sum_{j=1}^{j_m} \frac{L_x}{2\pi j} \left[\left(\tilde{s}_{Cj} + i\tilde{s}_{Sj}\right)h_s \left(K_x + \frac{2\pi}{L_x}j, k_y, z\right) - \left(\tilde{s}_{Cj} - i\tilde{s}_{Sj}\right)h_s \left(K_x - \frac{2\pi}{L_x}j, k_y, z\right) \right] + \dots
$$

• Straightforward to implement, likely at little computational cost

First proof-of-principle simulations

18

Moves integer surfaces of flux tube as expected

Temperature profile modified, but not as expected

All done.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation for the flux tube

Beer et al. *Phys. Plasmas* (1995).

- Crucial to minimize computational cost as much as possible
- Flux tube simulation domain exploits the scale separation assumed by gyrokinetics, $\rho_i/a \ll 1$
- Field-aligned coordinates minimize the volume of the simulation domain by reflecting the shape of turbulence
- Boundary conditions are elegant (i.e. periodicity)

Motivation for the flux tube

Beer et al. *Phys. Plasmas* (1995).

- Crucial to minimize computational cost as much as possible
- Flux tube simulation domain exploits the scale separation assumed by gyrokinetics, *ρi*/*a* ≪ 1 domain
paration
etics,
Mhat's the issue?
- Field-aligned coordinates minize the volume of the simulation domain by reflecting the shape of turbulence
- Boundary conditions are elegant (i.e. periodicity)

z

 $\boldsymbol{\mathcal{X}}$

y

Motivation for the flux tube

Beer et al. *Phys. Plasmas* (1995).

 $\hat{s} \rightarrow 2\hat{s}$

 $x - x_0$

 x_0)

 $q(x) \approx q_0 \left(1 + \hat{s}\right)$

- Crucial to minimize computational cost as much as possible
- Flux tube simulation domain exploits the scale separation assumed by gyrokinetics, $\rho_i/a \ll 1$
- Field-aligned coordinates minimize the volume of the simulation domain by reflecting the shape of turbulence
- Boundary conditions are elegant (i.e. periodicity)

Beer et al. *Phys. Plasmas* (1995).

Npol = 3

Ball et al. *JPP* (2020).

 $x - x_0$

 x_0)

 $q(x) \approx q_0 \left(1 + \hat{s}\right)$

Motivation for the flux tube

- Crucial to minimize computational cost as much as possible
- Flux tube simulation domain exploits the scale separation assumed by gyrokinetics, $\rho_i/a \ll 1$
- Field-aligned coordinates minimize the volume of the simulation domain by reflecting the shape of turbulence
- Boundary conditions are elegant (i.e. periodicity)

Motivation for a non-twisting flux tube

- When $2\pi N_{pol} \hat{s} \gg 1$, the conventional flux tube becomes so twisted that it only supports modes that are strongly damped by FLR effects
- "Shifted metric" approach has been developed, but could not be applied to the standard flux tube domain (i.e. **periodic radial boundary condition and with a Fourier representation**)
- In this talk, we will show how it can be done

Coordinate system transformation

Scott et al. *Phys. Plasmas* (2001).

• Define a new coordinate *Y* such that $\nabla x \cdot \nabla Y = 0$, so use

$$
Y(x, y, z) \equiv y - \frac{\nabla x \cdot \nabla y}{|\nabla x|^2}x
$$

Coordinate system transformation

Ball et al. *PPCF* (2021).

• Key new insight is to transform the boundary conditions consistently and then use them to find the allowed modes in Fourier-space

• Instead of the typical
$$
k_x = \frac{2\pi}{L_x}m
$$
, we find

$$
K_x = \frac{2\pi}{L_x} m + k_y \frac{\nabla x \cdot \nabla y}{|\nabla x|^2}
$$
 where $m \in \mathbb{Z}$

• To make non-twisting flux tube in Fourier-space, **construct a** rectangular grid in $K_{\!\scriptscriptstyle \chi}$ instead of $k_{\!\scriptscriptstyle \chi}$

Physical meanings of k_x and K_x

If you trace the perturbation back along field lines to $z = 0$, has no variation in ∇x

Has no variation in ∇x at all *z* locations

Transforming the Fourier-analyzed gyrokinetic eq.

$$
\frac{\partial h_s}{\partial t} + w_{||}\hat{b} \cdot \nabla z \frac{\partial h_s}{\partial z}\Big|_{K_x - k_y \frac{\nabla x \cdot \nabla y}{|\nabla x|^2}} + i \vec{v}_{ds} \cdot (K_x \nabla x + k_y \nabla Y) h_s + a_{s||} \frac{\partial h_s}{\partial w_{||}}
$$

$$
+ \{h'_s, \phi'' J_0 (K''_{\perp} \rho_s)\} = \frac{Z_s e F_{Ms}}{T_s} \frac{\partial \phi}{\partial t} J_0 (K_{\perp} \rho_s) - i \frac{k_y}{JB} \phi J_0 (K_{\perp} \rho_s) \frac{dF_{Ms}}{dx}
$$

- 1. The parallel derivative must still be taken at constant $k_x = K_x k_y$ ∇*x* ⋅ ∇*y* $|\nabla x|^2$
- 2. The geometric coefficients lose their secular dependence along the field line:

$$
k_{\perp} = \sqrt{k_x^2 |\nabla x|^2 + 2k_x k_y \nabla x \cdot \nabla y + k_y^2 |\nabla y|^2} \rightarrow K_{\perp} = \sqrt{K_x^2 |\nabla x|^2 + k_y^2 |\nabla Y|^2}
$$

$$
\propto \hat{S}z \qquad \propto (\hat{S}z)^2
$$

Conventional grid prioritizes following linear modes, while non-twisting grid minimizes FLR damping ⇒

CBC with adiabatic electrons and $\hat{s} = 0.8$

Dimits et al. *Phys. Plasmas* (2000).

• Similar convergence and run time

CBC with adiabatic electrons, $\hat{s} = 0.8$, $N_{pol} = 3$

• Time step is much larger due to elimination of small radial scales

New choice of gridpoints can better fit turbulence

Dimits et al. *Phys. Plasmas* (2000).

• Cyclone base case in a domain that is three poloidal turns long

CBC with adiabatic electrons, $\hat{s} = 0.8$, $N_{pol} = 3$

• Non-twisting $N_{\rm x}=128$ sim. is **7x** faster than conventional $N_{\rm x}=256$

Shaped DEMO with kinetic elec., $\hat{s} = 2.4$, $N_{pol} = 1$

• Inboard is better resolved by non-twisting flux tube, but little flux there

CBC with adiabatic electrons, $\hat{s} = 4.0$, $N_{pol} = 3$

• Non-twisting flux tube is **>30x** faster than conventional

Transforming real space boundary conditions

Beer et al. *Phys. Plasmas* (1995).

• Using $Y(x, y, z) = y + \hat{s}z x$, the binormal boundary condition **stays boring**

 $\phi(x, Y(x, y + L_y, z), z) = \phi(x, Y(x, y, z), z), z) \Rightarrow \phi(x, Y + L_y, z) = \phi(x, Y, z)$

• The radial boundary condition **becomes interesting**

 $\phi(x + L_x, Y(x + L_x, y, z), z) = \phi(x, Y(x, y, z), z) \Rightarrow \phi(x + L_x, Y + \hat{s}zL_x, z) = \phi(x, Y, z)$

• Using $Y(x,\zeta,z)=C_y\zeta-C_yq_0z$, the parallel "twist-and-shift" boundary condition **becomes boring**

$$
\phi(x, Y(x, \zeta, z + 2\pi N_{pol}), z + 2\pi N_{pol}) = \phi(x, Y(x, \zeta, z), z)
$$

\n
$$
\Rightarrow \phi(x, Y, z + 2\pi N_{pol}) = \phi(x, Y, z)
$$

Transforming radial Fourier-space boundary cond.

• Substituting $\overline{\phi}(x, Y, z) = \sum \hat{\phi}(x, k_y, z) e^{ik_y Y}$ from the binormal boundary condition, *ky*

$$
\overline{\phi}(x + L_x, Y + \hat{s}zL_x, z) = \overline{\phi}(x, Y, z) \implies \hat{\phi}(x + L_x, k_y, z)e^{ik_y \hat{s}zL_x} = \hat{\phi}(x, k_y, z)
$$

• By Floquet's theorem, substitute $\hat{\phi}(x, k_{y}, z) = P(x, k_{y}, z)e^{-ik_{y}\hat{s}zx}$ to find

$$
P(x + L_x, k_y, z) = P(x, k_y, z)
$$

• Thus, $P(x, k_y, z)$ has a standard Fourier form/discretization in x , implying that

$$
K_x = \frac{2\pi}{L_x} m - k_y \hat{s}z \quad \text{where} \quad m \in \mathbb{Z} \quad \text{and} \quad \overline{\phi}(x, Y, z) = \sum_{K_x, k_y} \phi(K_x, k_y, z) e^{iK_x x + i k_y Y}
$$

Transforming the gyrokinetic equation

• Fourier analyzing using $\overline{h}_s(x, Y, z) = \sum h_s(K_x, k_y, z)e^{iK_x x + ik_y Y}$ gives

$$
\frac{\partial h_s}{\partial t} + \frac{w_{||}\hat{b} \cdot \nabla z}{L_xL_y} \oint \oint dx dY e^{-iK_x x - ik_y Y} \frac{\partial}{\partial z}\Bigg|_{x,y} \left(\sum_{K'_x, k'_y} h_s(K'_x, k'_y, z) e^{iK'_x x + ik'_y Y} \right) + i \overrightarrow{K}_{\perp} \cdot \overrightarrow{v}_{ds} h_s + \dots
$$

 $K_{\rm x}$, $k_{\rm y}$

• Substituting $Y = y + \hat{s}zx$ allows you to Fourier analyze in y, ̂

$$
\frac{\partial h_s}{\partial t} + \frac{w_{||}\hat{b}\cdot\nabla z}{L_x} \oint dx e^{-i(K_x + k_y\hat{s}z)x} \frac{\partial}{\partial z}\Bigg|_{x,k_y} \left(\sum_{K'_x} h_s(K'_x, k_y, z) e^{i(K'_x + k_y\hat{s}z)x} \right) + i\overrightarrow{K}_{\perp} \cdot \overrightarrow{v}_{ds} h_s + \dots
$$

• Calculate parallel deriv. in (x, k_y) or by holding $k_x = K_x + k_y \hat{s}$ z constant ̂

Shaped DEMO with kinetic elec., $\hat{s} = 2.4$, $N_{pol} = 1$

• Time step is now limited by shear Alfvén wave, even when $\beta \neq 0$

CBC with adiabatic electrons and $\hat{s} = 4.0$

• Significant, direct computational speed-up

CBC with adiabatic electrons and $\hat{s} = 4.0$

• Inboard is better resolved by non-twisting flux tube, but little flux there

Alternative twisting flux tubes

Watanabe et al. *Phys. Plasmas* (2015).

• It is straightforward to completely control the flux tube twist using

$$
Y(x, y, z) = y + f_{tw}(z)x
$$
 and $K_x \equiv k_x - k_y f_{tw}(z)$

where $f_{tw}(z) = 0$ $f_{tw}(z) = \hat{s}z$ ̂ Conventional: Globally non-twisting: $f_{tw}(z) = -\nabla x \cdot \nabla y / |\nabla x|$ 2 $f_{tw}(z) = 2\pi \hat{s}$ Round $[z/(2\pi)]$ Non-twisting: Flux tube train:

Alternative twisting flux tubes

- Potential applications
	- Coarsen grid at intermediate scales in multiscale simulations
	- Better adapt grids to local conditions in *z*
	- Prevent linear modes from being clustered around zero ballooning angle in conventional flux tube
	- **• Better optimize the twist of the flux tube cross-section**