KU LEUVEN

Extended grids in SOLPS-ITER: status and new code features

W. Dekeyser, S. Carli, W. Van Uytven, N. Horsten, P. Boerner, M. Blommaert, M. Baelmans

New SOLPS-ITER: unstructured finite volume solver

[W. Dekeyser et al., NME, 2021]

Arbitrary polygonal cells in poloidal plane possible, w. arbitrary connectivity Arbitrary (toroidally symmetric) magnetic topology ... but still 1st order discretization schemes => alignment needed as much as possible

Status extended grids version of SOLPS-ITER

- Extended grids functionality implemented for default SOLPS-ITER model
 - SOLPS5.2 drifts and currents model (except some smaller current/drift terms) v3.0.6
 - Default: correct treatment of grid non-orthogonality; can be turned off for structured cases (not recommended!)
 - Basic treatment of impurities converted
 - Basic feedback schemes available
- Remaining work
 - $_{\circ}$ $\,$ Some of the smaller drift terms, incl. adapted stencil for perp. visc. current
 - Non-default BCs
 - Feedback schemes
 - Various specific model options
 - Various input/output options (*b2time.nc*-traces, movies, IDS interfaces,...)

Coupling to EIRENE

- EIRENE version based on SOLPS-ITER v3.0.6
- Coupling routines adapted to unstructured format
 - Implicit geometry assumptions in interface with B2.5 removed (mainly: sheath model) \Rightarrow (small) restart effects possible
- Scoring of tallies directly in (polygonal) plasma cells (instead of triangles)
- Considerations for merging with EIRENE from SOLPS-ITER master:
 - => several updates done in SOLPS-ITER master version likely not included
 => further updates related to hybrid modeling included
 => merging with more recent EIRENE version will take careful checking

Status extended grids version of SOLPS-ITER

- Core solver verified on various cases, incl. MMS
- Fully backwards compatible* for existing, structured grids
 *except for bugfixes, and when not using improved stencil options
 *in some places, implicit geometric assumptions removed (e.g. interface to EIRENE)
- Grid generation remains bottleneck
 - Code can handle CARRE2 grids, but CARRE2 needs revival (documentation)
 - TIARA under development at ITER, but not interfaced to the solver

CARRE2: 'Target mode' and 'vessel mode' grids

Target mode

- Non-extended
- Internally orthogonal •
- No bunching • problems due to strong shaping,...

KU LEUVEN

1.5

R (m)

2

Poloidally localized MC recycling and heat/particle fluxes [W. Dekeyser et al., NME 2021.]

09/03/2021

Divertor solution

KU LEUVEN

Additional code features in extended grids code

- By default: correct treatment of grid non-orthogonality using 9-point stencil
 - $_{\circ}$ More complete and robust implementation compared to v3.1.0
- Advanced fluid and hybrid neutral models
 - AFN, incl. option of separate neutral energy equation
 - SpH in different flavors, incl. coupling to molecules
 - o mMH
 - See a.o. recent work presented at PET21 [Van Uytven et al., Horsten et al.]
- *k(-enstrophy)* models for improved description of anomalous transport
- Framework for optimization/calibration of unknown model parameters from experiment (nonlinear regression + MAP estimates)

κ_{\perp} model in extended grids code

• κ_{\perp} equation for 2D electrostatic interchange turbulence

$$\frac{\partial}{\partial t}\bar{n}\kappa_{\perp} + \nabla \cdot \overline{\Gamma}_{\kappa_{\perp}} = \overline{S}_{\kappa_{\perp}}$$

- Source/sink of κ_{\perp} : $\overline{S}_{\kappa_{\perp}} \approx \overline{S}_{IC} + \overline{S}_{||} + \overline{S}_{RS}$
- Transport: $\overline{\Gamma}_{\kappa_{\perp}} \approx \nabla \cdot \left(\overline{\Gamma}\kappa_{\perp} + \frac{1}{2}\overline{mnV''V_{E\times B}''^2} + \overline{\phi'J'_{\parallel}}\right)$
- Coupled to 'regular' mean field equations
 - $_{\circ}$ Transport coefficients determined by local value of κ_{\perp}

 $D_{E \times B} \sim \frac{C_D \kappa_\perp}{\sqrt{\kappa_\perp / m_i} / \rho_L + C_s |\nabla \overline{V}_{E \times B}|} \qquad \chi_{E \times B} \sim D_{E \times B} \sim \eta_{E \times B}$

- Energy conservation (mean field + turbulent + RS-drift)
- More details: [Coosemans et al., Dekeyser et al., PET 21]

Status of optimization tools in extended grids code

- Gradient calculation through Algorithmic Differentiation (AD TAPENADE [Inria])
 - Tangent mode: cost proportional to number of inputs, gradient verified on finite differences [Carli et al., Nucl. Mater. and Energy 18 (2019) 6-11.]
 - Adjoint mode: cost independent on number of inputs, gradient verified on finite differences, memory efficiency through reverse accumulation
- Optimization framework implemented in B2.5 through coupling to external libraries for large-scale optimization (IPOPT, PETSC/TAO)
- Results verified on simple cases (scalar diffusion coefficients)
- Framework for MAP estimation recently implemented (Bayesian setting), and parameter identification in the presence of measurement noise achieved [Carli et al, PET 21]

Bayesian MAP-estimation of k-model parameters [Carli et al., PET 21]

Extended grids: workflow for structured cases

• Structured case set-up following usual procedure:

divgeo => carre(2) => ... => b2ag => b2ah => b2ar => b2ai

• Conversion to unstructured format:

b2us: converts *b2fstati, b2fgmtry, b2.boundary.parameters, b2.neutral.parameters* and *input.dat* (*b2frates* and *b2fpardf*: unchanged)

- With converted files: set up new *baserun* and *run* directories
- Run simulation using unstructured solver (*b2mn*)
- Back-conversion to structured format:

 b2uf: creates b2fstate_st, b2fplasmf_st in structured format, for use in b2plot (minor adaptations to b2run-script (and b2plot) still needed to read b2fstate_st/ b2fplasma_st/ b2fgmtry_st)

SOLPS-ITER extended grids version (v3.2.0): route to code release

- Code robust and backwards compatible for 'standard' grids
- Ready to be handed to users for testing after minor updates to workflow
- Further conversion of various code features based on user demand
- Further development of true extended grids functionality, incl. grid generation and post-processing capabilities, can be developed in parallel (after initial release)
- Several interesting model and code features under active development (AFN / hybrid / k-enstrophy / AD)

Back-up

A hierarchy of neutral models

Advanced fluid neutral models (AFN)

- Efficient (direct) coupling to plasma equations, no MC noise
- Basis for hybrid methods
- Good accuracy in highly collisional regimes

Hybrid fluid-kinetic models

Kinetic model

- Most complete physical description
- Flexibility w.r.t. geometry, collisional processes, sources, boundary conditions,...
- Very expensive in highly collisional regimes

KU LEUVEN

Model accuracy

Computational efficiency

CPU × 1/10?

Achievements AFN

- Significant model improvements compared to 'standard' fluid neutral models
 - Transport coefficients consistent with collisional processes used by EIRENE (AMJUEL/HYDHEL) [N. Horsten et al., NF, 2017]
 - Boundary conditions consistent with kinetic treatment in EIRENE [N. Horsten et al., NF, 2017], incl.
 - fast/thermal reflection (approximate effect of molecules)
 - TRIM (effect of wall materials)
 - Separate neutral energy equation to extend validity range of fluid (and SpH) model towards lower recycling conditions (+ expect increased efficiency mMH) [W. Van Uytven et al., CPP 60, 2020]
- Implementation of AFN, incl. separate T_n equation, in new extended grids version of SOLPS-ITER
 - o correct treatment of grid non-orthogonality [W. Dekeyser et al, NME 18, 2019]
 - simulations up-to-the-wall

'Standard fluid neutrals' vs. AFN vs. kinetic

[W. Van Uytven et al., in preparation.]

AFN outperforms original fluid model, without need for parameter tuning compared to kinetic simulation!

AFN: impact of wall material

[W. Van Uytven et al., in preparation.]

KU LEUVEN

30/11/2020

AFN: application to ITER

The need for SpH methods

Voids not in fluid simulation

λ: Mean-free pathL: Characteristic lengthscale for transport

-2.5

-1.5

-2

KU LEUVEN

Spatially hybrid: interface conditions

[M. Blommaert et al., NME, 2019.]

Note: approach not restricted to voids only; can decide at each boundary to treat recycling as 'fluid' or 'kinetic'

Surface source in EIRENE sampled from truncated Maxwellian fluid neutral distribution

Kinetic neutrals are followed until ionization

Fluid neutral boundary condition Moments of Maxwellian → imposed fluxes

$$\Gamma^{n}_{\mu} = \int_{\mathbf{v}\cdot\boldsymbol{\nu}>0} \mu(\mathbf{v}) M(\mathbf{v}) d\mathbf{v}$$

Achievements SpH

- Determine for each boundary whether to treat recycled/reflected particles as fluid or kinetic
 - Improved accuracy compared to pure fluid
 - Improved speed compared to kinetic
- Coupling to molecules
 - Purely kinetic treatment of molecules, SpH for atoms
 - After dissociation of molecule: choice whether to continue with fluid or kinetic treatment of the resulting atom(s) (more reliable treatment based on local 'fluid limit' under investigation)
 - Adaptations to B2.5-EIRENE interface to decide which part of the incident fluxes should be recycled as kinetic atom/molecule (=> EIRENE) or fluid atom (=> B2.5)

KU LEU

- Speed up compared to fully kinetic simulation: ~order of magnitude (JET L-mode, N. Horsten, NME)
- Integration in extended grids version of SOLPS-ITER

SpH: first application to ITER, fixed plasma (prelim.)

KU LEUVEN

Application 3: matching experimental data

[Baelmans et al., Plasma Phys. Control. Fusion 56 (2014) 114009.]

Cost functional

$$J(\phi, \mathbf{q}) = \frac{1}{2} \int_{\mathrm{t,OM}} \frac{1}{L_0} \left(\frac{1}{n_0^2} \left(n - n^{\mathrm{exp}} \right)^2 + \frac{1}{T_0^2} \left(T - T^{\mathrm{exp}} \right)^2 \right) \mathrm{d}s$$

 ϕ : transport coefficients and plasma edge model constants

q : 'state' variables (plasma density, temperature,...)

Control variables: unknown parameters ϕ to match

Additional constraints: ϕ within specified range

Proof of principle parameter estimation

- Slab case, pure D plasma with AFNs
- Scalar $D_{\perp} \in [0.5, 2.5]$, only n_e in cost functional
- Fictitious experimental data: SOLPS result with scalar D_{\perp}^{ref}

Scalar D_{\perp} and $\chi_{e\perp}$ estimation, n_e and T_e in cost function

KU LEUVEN

AFN: impact of separate T_n equation.

AFN: impact of separate T_n equation

[W. Van Uytven et al., in preparation.]

KU LEUVEN

30/11/2020

SpH: coupling to molecules

[N. Horsten et al., submitted to NME.]

SpH: coupling to molecules, speed-up

[N. Horsten et al., submitted to NME.]

			!	
	$A_{n_{e,it}}$	$A_{n_{\rm e,ot}}$	$A_{T_{\mathbf{e},\mathbf{it}}}$	$A_{T_{e,ot}}$
$\overline{n_{\rm core}} = 2.0$	$0 \cdot 10^{19}$ r	n^{-3}		
Kinetic	4.19	5.23	5.39	5.00
Hybrid 1	3.69	1.42	2.94	1.72
Hybrid 2	1.52	1.36	1.73	1.68
$\overline{n_{\rm core}} = 4.0$	$0 \cdot 10^{19}$ r	n^{-3}		
Kinetic	1.72	3.07	6.25	9.61
Hybrid 1	1.41	3.86	2.24	2.18
Hybrid 2	1.24	1.04	1.68	1.11

Variance reduction at equal # particles

Hybrid 1: diss. mol. kin. Hybrid 2: diss. mol. fluid

- Speed-up: ~ $(A_{kin}/A_{hyb})^2$
 - Hybrid 1: ~ 6...7
 - Hybrid 2: ~ 10...20
- Trade-off hybrid 2: speed-up vs. model accuracy; further optimization possible:
 - Improved redistribution of particles for hybrid methods
 - Improved choice between fluid/kinetic treatment dissociated molecules based on stratum/location/...

The interchange source of κ_{\perp}

• Total heat flux due to $E \times B$ fluctuations drives production of k_{\perp} [Coosemans et al., prev. talk.]

$$\overline{S}_{IC} = -\frac{2}{3} \left(\overline{\Gamma}_{i,E \times B} \, \widetilde{T}_i + \, \overline{\Gamma}_{e,E \times B} \widetilde{T}_e + \overline{Q}_{i,E \times B} + \, \overline{Q}_{e,E \times B} \right) \cdot \nabla \ln B^2$$

- Source in 'bad-curvature' regions
- Sink (!) in 'good-curvature' regions
- Internal saturation mechanism
- Energy conservation: coupling with ion/electron internal energy equations
- Neglect transport contributions (cancel exactly in 1D) $\nabla \cdot \left(\overline{\phi' J'_*} + \overline{p' V'_{E \times B}}\right) \approx 0$

KU LEUVE

Transport of κ_{\perp} due to parallel current fluctuations

Strongly exceeds parallel

convection with $\tilde{u}_{||}!$

• Parallel current fluctuations:

 $j'_{||} \approx -\sigma_{||} \nabla_{||} \phi' + \frac{\sigma_{||}}{en_e} \nabla_{||} p'_e + \frac{0.71\sigma_{||}}{e} \nabla_{||} T'_e$

• Model for transport of κ_{\perp} :

 $\overline{\phi' j'_{||}} \sim -\sigma_{||} \nabla_{||} \frac{\overline{\phi'^2}}{2} \sim -C_{\sigma 1} \sigma_{||} \rho_L^2 \nabla_{||} \kappa_{\perp}$

('ideal' interchange: $\frac{\pi}{2}$ phase shift n'/T'_e and ϕ')

• Model for (small) dissipation term for κ_{\perp} :

$$\overline{S}_{||} = \overline{j'_{||}} \cdot \nabla_{||} \phi' \sim -\sigma_{||} (\nabla_{||} \phi')^2 \sim -C_{\sigma_2} \sigma_{||} \left(\frac{\rho_L}{L_{||}}\right)^2 k_{\perp}$$

 $\left(\kappa_{\perp} \sim (\nabla_{\perp} \phi')^2 \sim \frac{\phi'^2}{\rho^2}\right)$

• Energy balance: coupling with electron energy equation

KU LEUVE

13/09/2021

Impact of (mean) $E \times B$ flow shear

• Reynolds-stress tensor: negative-viscosity model

$$\Pi_{RS} = \overline{mnV_{E\times B}^{\prime\prime}V_{E\times B}^{\prime\prime}} \sim \frac{2}{3}\overline{n}\kappa_{\perp}I - 2\eta_{E\times B} \left(\nabla\overline{V}_{E\times B} + \nabla\overline{V}_{E\times B} - \frac{1}{3}\left(\nabla\cdot\overline{V}_{E\times B}\right)I\right)$$
$$\eta_{E\times B} = -C_{n}m\overline{n}D_{E\times B}$$

• Turbulence suppression due to flow shear

 $\overline{S}_{RS} = -\Pi_{RS} : \nabla \overline{V}_{E \times B} \sim \eta_{E \times B} \left(\frac{\partial \overline{V}_{E \times B, \theta}}{\partial r} \right)^2$

• Energy conservation: corresponding ion drift/current $\Gamma_{RS} = \frac{mb}{aB} \times \left(\nabla \cdot \overline{nV_{E\times B}^{\prime\prime}V_{E\times B}^{\prime\prime}}\right)$

KU LEUVEN

Model summary

• κ_{\perp} equation for 2D electrostatic interchange turbulence

 $\frac{\partial}{\partial t}\bar{n}\kappa_{\perp} + \nabla \cdot \overline{\boldsymbol{\Gamma}}_{\kappa_{\perp}} = \overline{S}_{\kappa_{\perp}}$

- Source/sink of κ_{\perp} : $\overline{S}_{\kappa_{\perp}} \approx \overline{S}_{IC} + \overline{S}_{||} + \overline{S}_{RS}$
- Transport: $\overline{\Gamma}_{\kappa_{\perp}} \approx \nabla \cdot \left(\overline{\Gamma}\kappa_{\perp} + \frac{1}{2}\overline{mnV''V_{E\times B}''^{2}} + \overline{\phi'J'_{\parallel}}\right)$
- Couple to 'regular' mean field equations
 - $_{\circ}$ Transport coefficients determined by local value of κ_{\perp}

 $D_{E \times B} \sim \frac{C_D \kappa_\perp}{\sqrt{\kappa_\perp / m_i} / \rho_L + C_s |\nabla \overline{V}_{E \times B}|} \qquad \qquad \chi_{E \times B} \sim D_{E \times B} \sim \eta_{E \times B}$

- Energy conservation (mean field + turbulent + RS-drift)
- Implemented in new 'extended grids' version of SOLPS-ITER [Dekeyser et al., NME 27 (2021) 100999.]

KU LEUVE

Test case based on C-Mod shot #1070627009

[Dekeyser et al., NME 12 (2017) 899.]

Model

- Single species deuterium plasma
- SOLPS-ITER drifts model incl. (mean-field) ExB and diamagnetic drifts
- Complete kinetic neutral model (atoms + molecules), including n-n collisions
- Newly developed κ_{\perp} model for anomalous transport

Setup and boundary conditions

- Lower Single Null (LSN), ion *B*×∇*B* drift towards divertor ("normal" field direction)
- Core: fixed density, power $P_{OH} P_{rad,core} \sim 0.8$ MW
- Targets: standard sheath conditions
- Radial boundaries: leakage BCs

Experimental data

- Focus on midplane and target probes

KU LEUVEN

Midplane profiles compared to 'standard' approach

KU LEUVEN

Dekeyser et al. - PET21 - k-model for ExB drift turbulence

Target profiles compared to 'standard' approach

13/09/2021

Similar effect when reducing density at fixed power

