Simulation of Heating and Current Drive sources and Synthetic Diagnostics in IMAS

IMAS framework - Tutorial session 20 September 2020

Mireille SCHNEIDER

ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul-lez-Durance, France

Contact: mireille.schneider@iter.org

M. Schneider - IMAS framework - Tutorial session

Heating and Current Drive sources

M. Schneider - IMAS framework - Tutorial session

- The Heating & Current Drive (H&CD) systems in the ITER Research Plan
- H&CD modelling using the ITER Integrated Modelling & Analysis Suite (IMAS)
- Synergetic effects between NBI and ICRH systems in presence of fusion-born alphas for an ITER DT 15MA / 5.3T scenario
- Conclusion

The H&CD systems in the ITER Research Plan

2025	2026	2027	2028	2029	2030	2031	203	32	2033	2034	2035	2036,	
	H pla	sma		H, ⁴ He	plasm	nas		Η,	⁴ He pla	ismas		D, DT	EC
	6 m			18 m				_	21 m	<u>_</u>			
	1st plac	ma		Pre-Fus	sion			Pre	e-Fusior			Fusion	IC
		Asse	mbly /	Powe	er A	ssembly	//		Power	Asse	embly /	Power	NBI
		commis	ssioning	Operat	. 1	commis.		0	perat. 2	com	imis.	Operation	NBI

- Three external H&CD systems:
 - Electron Cyclotron wave: 170 GHz, 20MW (+20)
 - Ion Cyclotron wave: 40-55 MHz, 20 MW (+20)
 - Neutral Beam Injection: 870 keV H⁰, 1 MeV D⁰, 33 MW (+16.5)
- One intrinsic H&CD process:

china eu india japan korea russia usa

- Fusion reactions!
 - 3.5 MeV ~80-100 MW for DT 15 MA/5.3T baseline scenario

The ITER Integrated Modelling & Analysis Suite (IMAS)

- IMAS provides a standard and managed access to experimental and simulated data via Interface Data Structures (IDS)
- Aims at integrating free-boundary evolution, core-edge-SOL transport, divertor physics and PFC models to allow high fidelity physics simulations
- Is suitable for any fusion tokamak device
- Will be used for ITER data processing and analysis
- To know more: <u>https://imas.iter.org</u>

Other plant systems

The IMAS Data Dictionary

• Core	charge_exchange	dataset_description
• Edge	edge_profiles bremsstrahlung visible	summary
Electro-Magnetics	edge_sources	transport_solver_numerics
 Physics phenomena Evolling 	edge transport	numerics
 H&CD 	pellets mhd ntms spectrometer mass	temporary
Other plant systems	disruption radiation	dataset_fair
Diagnostics	turbulence mhd_linear	controllers
Data management	gyrokinetics sawteeth waves ic antennas	pulse_schedule
	distribution_sources	amns_data
spectrometer_uv	core_transport distributions hei	sdn
bolometer pf_acti	ve core_sources	
langmuir_probes	core instant changes	
hard_x_rays ^{tf}	cryostat	The dictionary
polarimeter ^{pf}	_passive equilibrium ^{mse} interferometer	evolves with the
barometry	em_coupling iron_core reflectometer profile	development of
camera vi	sible coils_non_axisymmetric camera ir	the INA platform
spectro	meter x ray crystal thomson_scattering	
opeonor	ece calorimetry neutron diagnostic	
	Calolimetry mean <u>_</u>	

Towards a high-fidelity plasma simulator

The H&CD workflow

iter

china eu india japan korea russia usa

GUI to configure the H&CD workflow

	HCD W	RKFLOW		+ - = ×	Choic	o of F	18.0	D codes for e	ach source	
WORKFLOW PARAME	ETERS (STANDALONE)	ec wave solver	ECRH							
input_user_or_path	public		ICRH	•	Contig	gurati	on	of code parame	eters for	
input_database	iter	ic_coup	iccoup	•	aaah	oodo		-		
shot_nr	130012	ic wave solver	Cvrano		each	coue				
un_in	2	ic wave fr	-, -	•						
output_user_or_path	default	ic_wave_rp	Ē.	Edit Code Paramete	ers	(+ - • ×				
output_database	default	nbi source	ECRH	Save Res	tore default	Exit				
un_out	13	nbi fp	torbeam	npow	1					
begin	5	····	тсвн	ned	1		١.	Norkflow and a	odo opooif	ia
end	350.	nuclear_source	Torrit	ncdroutine	2	_	🔶 V	VOIKIOW and C	oue-specin	IC
lt_required	20	nuclear fp	iccoup	nprofy	2	_		configuration st	ored in a	
FURTHER	SETTINGS		Cyrano	noout	90	_		configuration st		
proc_ion_fp	8	fill_core_sources	NBI	nrela	1		S	specific configu	ration folde	эr
nmarkers_bbnbi_ascot	100		nemo	nmaxh	4					
Load	Run	fill_core_profiles	rick	nabsroutine	1	-		channe D'an daar		
Save	Restore Default	Edit Code Paramete	NUCLEAR	nastra	0			Choose Directory		
Co:40, 00			NOOLEAN	nprofcalc	0	<u>D</u> irecto	ory:	/home/ITER/schneim/public/git/	hcd/data — 🔯	
Save as	IM		spot	ncdharm	0	-				
Exit			source	npnts_extrap	0	APS_13	30012_2	2 at_torbeam	run_201021_1	
			hcd2core_sources	nfreq_extrap	0	hatch	test	ios grav	nun_201021_1	
				nrel	0	bbnbi	ascot	ios torbeam	run 201021 1	
Doccib	ility to con	figuro o		xrtol	1.e-7	📄 cyrano	stixred	list 🔚 lauber_100015_1	run_201022_1!	
F022ID	inty to con	nyure a		xatol	1.e-7	🛅 dt_gray	у	🛅 nemo_spot_tuto	🛅 run_201022_1!	
time lo	on for star	ndalone		xstep	2.0				N	
				rhostop	0.96	I			A	
H&CD	execution	on an		xzsrch	0.	<u>S</u> electi	ion:	/home/ITER/schneim/p	ubli <u>o</u> k	
ovictio	a oconorio	L							<u>C</u> ancel	
existing	y scenario)								

iter china eu india japan korea russia usa

NBI+ICRH synergetic effects in presence of fusion alphas

	ECRH	ICRH	NBI	Nuclear reactions
Wave or source	GENRAY GRAY TORBEAM	CYRANO LION PION TOMCAT	BBNBI <mark>NEMO</mark>	AFSI SPOT (α)
Fokker- Planck	Ø	FOPLA PION ASCOT SPOT	FOPLA ASCOT SPOT <mark>RISK</mark>	ASCOT <mark>SPOT</mark>

 FOPLA: 1D Fokker-Planck solver for IC-accelerated ions, handling NBI sources → NBI+ICRH synergy

Application to an ITER 15MA / 5.3T DT scenario

 Input scenario from IMAS scenario database: ITER DT 15 MA / 5.3 T (from METIS)

- ICRH modelling: 20 MW:
 - 40 MHz, for N=1 D(+Be)

✤ 53 MHz for N=2 T heating

iten china eu india japan korea russia usa

Results for ICRH only (20 MW)

Ion heating is dominant in the core

china eu india japan korea russia usa

iter

ICRH: Collisional power (D) > Collisional power (T)

Preliminary check: NBI modelling

• NBI only to check the consistency of the NBI treatment:

→ The NBI modelling is consistent between the RISK and FOPLA Fokker-Planck codes, despite FOPLA being 1D, $F_0(v)$.

- Ion and electron heating are similar in the core
- Electron heating dominant in the outer half of the plasma
- NBI: Collisional power (D) > Collision power (T)

Preliminary check: fusion-born alpha modelling

• Fusion only to check the consistency of the fusion-born alpha particles:

Total fus (MW)		96.6	
On electrons		69.1	
		D	11.4
On ions	27.5	Т	7.7
		Others	8.4

→ The fusion-born alpha modelling is consistent between the SPOT and FOPLA Fokker-Planck codes, despite FOPLA being 1D, $F_0(v)$.

- Electron heating dominant throughout, ~75%
- Some ion heating from slowed-down alphas, ~25%
- Alphas: Collisional power (D) > Collisonal power (T)

Results for NBI (33MW) + alphas (96MW) + ICRH (10MW)

Weak RF-α and RF-NBI synergy (<5% ICRH)

Note: higher NBI+ICRH synergy in PFPO-2: [A. Polevoi et al, NF 2020]

iter china eu india japan korea russia usa

Dominant electron heating (alphas)
 Significant core ion heating (~40%) due to combined ICRH, NBI and α heating

Synergy between NBI and ICRH for ITER Helium scenario

RF power (waves) Collisional power per species (distributions) • 2.65 T / 7.5 MA scenario **ICRF** to Electrons Collisions to Electrons ICRF to Hydrogen Collisions to Hydrogen Total Collisions to He-4 ICRF to He-4 0.5 0.4 20 MW ICRH 43 MHz --- Total ICRF absoprtion ····· NBI power Total ····· NBI power Total collisional power Grand total (MW/MB3) 33 MW NBI 870 keV ICRH 0.3 Electrons Decoupled 0.3 ICRH and 0.2 **NBI** sources t = 267.5 st = 267.5 s0.2 1e19 NBI Electrons 5 T_e(0) 0.1 n_e(0) • T_i(0) 0.1 $n_i(0)$ 4 NBI $n_H(0)$ DHeA(C n[m⁻³] n_{Be}(0) 0.0 0.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.50 1.75 2.00 1.25 Toroidal flux coordinate (m) Toroidal flux coordinate (m) RF power (waves) Collisional power per species (distributions) 1 **ICRF** to Electrons Collisions to Electrons ICRF to Hydrogen Collisions to Hydrogen 0.4 0.4 Collisions to He-4 to He-d 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 **N** Total ICRF to H beam ····· NBI power Total ρ/ρ_0 p/po --- Total ICRF absoprtion Total collisional power ····· NBI power ICRH (ma) 0.3 Grand total Significant synergetic Electrons 0.2 0.2 **RF-NBI** synergy effect between NBI and NBI With NBI 0.1 0.1 ICRH for this scenario. Electrons NBI+ICRH 4He synergy 0.0 0.25 0.50 0.75 1.00 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.75 0.00 1.25 1.00 1.25 1.50 2.00 Toroidal flux coordinate (m) Toroidal flux coordinate (m)

12 -

10

8

6

4

2

0

iter

china eu india japan korea russia usa

T[keV]

Study of ECH absorption profiles in 2.65 T / 2.7 MA scenarios

Excellent agreement between TORBEAM (solid) and GRAY (dashed).

On developing Synthetic Diagnostic models in IMAS

https://confluence.iter.org/display/IMP/Synthetic+Diagnostics

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

SD models to be ready prior each phase of the IRP

2025	2026	2027	2028	2029	2030	2031	2032	2	2033	2034	2035	2036,	
	H plas 6 m	ma		H, ⁴He 18 m	e plasm	nas		H, 4 2	He pla 1 m	smas I		D, DT	
	1 st plasr	^{na} Assei commis	mbly / ssioning	Pre-Fu Powe Opera	sion er A t. 1	ssembly commis	//	Pre P Op	-Fusior Power perat. 2	Asse	embly / imis.	Fusion Power Operation	
	Demonstrate inte- gration of tokamak core components.			 Main plant system Commissioning 7.5MA/2.65T L-mode 5MA/1.8T H-mode 				 Raise current & power to 15 MA and 73 MW Increase pulse duration 7.5MA/2.65T H-mode 				 Q=10, long-pulse scenarios Burning plasma physics 	
	Fir	st Plas	sma		PFPO	-1			PFP	0-2		FPO FPO	
E k F	Basic s preakdo protecti	et (ma own, in ion, de	gnetics vestme nsity)	s, S ent m p	ubset nents o arame	for mea of plasn ters & o	asure na conti	e- rol	Nea com	rly plete s	set	Complete set including DT fusion products	
	\rightarrow Enc	2021			> End	2023			$\rightarrow N$	lid 202	7	→ Spring 2030	

 \rightarrow Working group to coordinate the SD development in ITER:

Science Division: Mireille Schneider

china eu india japan korea russia usa

Port Plugs & Diagnostics Division: Maarten De Bock

SD models categories & requirements

Synthetic Diagnostics are needed for:

- Requirements for each category still to be defined.
- A model can belong to one or more of the D/P/C categories.

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

SD models in IMAS

Why do we need SD models to be adapted to iMAS?

- → SD models to be adapted to IMAS for a better portability and traceability of data
- \rightarrow Synthetic signals to be stored in the scenario database.

An IMAS model exchanges IDSs exclusively + an optional xml code parameter file:

 \rightarrow Single component that can be integrated into the IMAS framework.

!!! The model should not depend on any other external file (for now we also use of centralised CAD files, to be later copied in Machine Description database)

ids4,ids5 = sd_model(ids1,ids2,ids3,xml_codeparam)

Associated development needed:

china eu india japan korea russia usa

- Extension of the IMAS Data Dictionary (some IDSs are too basic or not existing)
- Population of the Machine Description DB with the geometry of ITER diagnostics

List of available SD models

 We maintain a list of SD codes that contribute to the development of the ITER IM platform: <u>https://confluence.iter.org/display/IMP/Synthetic+Diagnostics</u>

Diagnostic (+ITER PBS identifier)	Contacts	Source Code Repository	Dependencies	In IMAS	Regression Tests	Documentation	Demonstration input data	Applications: Design, Physics Control
Charge Exchange Recombination Spectroscopy, for Core / Edge / Pedestal 55.E1 / 55.EC / 55.EF	Author: Alexey Shabashov IO contact: @ De Bock Maarten	CXRS	CHERAB	yes	no	Presentation: 3U2DBZ Report by Maxim Bykov based on old material (Matlab): X3NAVL		D/P
H-alpha and Visible Spectroscopy 55.E2	Author: @ Khusnutdinov Radmir IO contact: @ De Bock Maarten	H-alpha	CHERAB	yes	no	Report: 2N57XR		D/P
Divertor Impurity Monitor (DIM) 55.E4	Author: @ Natsume Hiroki IO contact: @ De Bock Maarten	DIM	CHERAB	yes	no	Presentation: 2C7R9M To be published in Plasma and Fusion Research: 3Z47PC		D/P
Visible Spectroscopy Reference System (VSRS) 55.E6	Author: Bart van den Boorn IO contact: @ De Bock Maarten	VSRS	CHERAB	yes	no	Report: 3AKPSV Presentation: 3TY5AU	134000/60/public/ITER 122264/2/public/ITER	D/P
Toroidal Interferometer Polarimeter (TIP) 55.C5 (+ soon: DIP 55.FA, PoPola 55.C6)	Author, IO contact: @ Medvedeva Anna	TIP	-	yes	no	Described in the following presentation: IMEG 2020-21 - Development of Synthetic Diagnostics for ITER	100002/1/public/ITER	D/P/C
Refractometer 55.F9	Author: Kirill Afonin IO contact: @ Polevoi Alexei	Refractometer	-	yes	no	Described in the following presentation: 55.F9 Refractometry channel Synthetic Diagnostic Project	130501/1/public/ITER	D/P/C

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

Example of IMAS SD model: the DIP_TIP_POP model

 \rightarrow Python SD model

developed by A. Medvedeva

- 55.FA Density Interfer. Polarim (DIP), First Plasma
- 55.C5 Toroid. Interfer. Polarim. (TIP), PFPO-1
- 55.C6 Poloid. Polarim. (POP), PFPO-2

Time-evolving Lines of sight (toroidal cross-section) 50305/1/public/ITER_MD 00003/1/public/ITER density profiles 1.50 Model: categories D/P/C m 1.25 ÷ 1.00 Measurements: 0.75 • Primary: $\int n_e dl$, $\delta n_e / n_e$, $\delta T_e / T_e$ 0.25 0.00 -10.0-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 • Suppl.: Core and edge n_{ρ} profiles Scenario DB Machine Descr. DB core profiles Line-averated densities: interferometer Densities vs. time along each LoS equilibrium ∫nedl m⁻² 1.50 TIP model interferometer 100 200 300 400 500 time.

out_interferometer = dip_tip_model(equilibrium,core_profiles,interferometer_md)
out_polarimeter = pop_model(equilibrium,core_profiles,polarimeter_md)

Example of IMAS Synthetic Diagnostic: Refractometer

- ◆ 55.F9.40: refractometry channel of HFS reflectometer, PFPO-2
 → Python SD model (K. Afonin):
- Measures $\int n_e dl$ (supplementary)

china eu india japan korea russia usa

refractometer = sd.slice_xml_wrapper(equilibrium,core_profiles,refractometer,xml_filename)

ITER bolometers with ToFu

 55.D1: Bolometers, using ToFu: Open Source Python library natively compatible with IMAS, made for Synthetic Diagnostics and tomography for Fusion devices (D. Vezinet)

Code parameters:

- Brightness $(W. m^{-2})$ or received power (W)
- Integration step along LoS (resolution)

bolometer_sd = tofu_bolo(edge_sources, wall, bolometer_md, xml_codeparam)

(Divertor) Neutron Flux Monitors in IMAS

- 55.BC: DNFM developed by A. Kovalev (from 2016 to now on)
- Fortran and Python versions, all in IMAS:

en flux and a shift na shift nt with less

-15

505

510

515

520

Time, [s]

525

530

- DNFM and NFM measure the total neutron flux and fusion power:
 - DNFM more sensitive to vertical plasma shift
 - NFM more sensitive to horizontal plasma shift
- → To be combined to deliver a measurement with less systematic error.

535

Example: VSRS Synthetic Diagnostic

Development of the CASPER code

 CAmera & SPectroscopy Emission Ray-tracer: born from extracting all the features of the VSRS, CXRS, H-alpha and DIM codes for light spectrum calculation:

- Improvements of the VSRS code by M. Majeed, support from A. Shabashov
- Collaboration with JA-DA: H. Natsume, S. Kajita
 - Extension of RaySect to include BRDF for reflection computation
 - Benchmark of RaySect (open-source) with LightTools (commercial)

iter

Goal: workflow for SD Spectrometry (to be extended)

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

First version of the Synthetic Diagnostic workflow

tera china eu india japan korea russia usa

Independent time base management for each SD model

Individual IDS bundles within the SD workflow

Each SD model receives it own output back as an input for the next time slice

Mergers needed only to write a single instance of IDS (here interferometer) to disk

it (e) china eu india japan korea russia usa

Example of using different time bases for SD models

- DINA-JINTRAC scenario with free boundary core-edge-SOL transport
- DT, 15 MA / 5.3 T, L-mode
- Results read from the interferometer IDS output by the diagnostic workflow (where DIP and TIP results are merged).

Outline

- Synthetic Diagnostics (SD) in the ITER Research Plan (IRP)
- Synthetic Diagnostics models in IMAS
- Examples: interferometry, refractometry, bolometry, neutron fluxes, visible spectroscopy
- IMAS workflow for Synthetic Diagnostics
- Summary and Conclusion

Conclusion H&CD

- IMAS provides a standard for integrated modelling delivering a high level of modularity and flexibility
- A key deliverable is a high-fidelity plasma simulator including self-consistent calculation of free-boundary equilibrium + core-edge transport
- The H&CD workflow has been developed as an essential element of any high-fidelity plasma simulator, enabling the modelling of the synergy between H&CD sources
- The H&CD workflow has been integrated within the core-edge JINTRAC transport solver
- The DINA free boundary equilibrium code is being coupled to the JINTRAC transport solver

A first version of a high-fidelity plasma simulator is expected soon!

Conclusion Synthetic Diagnostics

- The SD development is already well covered by internal activities and collaborations
- A workflow for Synthetic Diagnostics is being developed, based on the same spirit as the IMAS H&CD workflow:
 - Enable direct access to IMAS scenario and Machine Description databases
 - Time edition tool to allow executing SD models with different time bases
 - Now limited to just a few SD models but expected to grow quickly!
- We have a very active sub-group on visible spectroscopy modelling (meetings every Thursday):
 - Development of CASPER code for generic light spectrum calculation
 - Building modularity with visible spectrometers and cameras downstream
 - Benchmark activity
- Global information on SD development for ITER here:

https://confluence.iter.org/display/IMP/Synthetic+Diagnostics