
Integration of the source code in IMAS

Dmitriy Yadykin, Bartek Palak and Poznan ACH team

Different levels of integration

Two major levels of the source code integration in the IMAS
infrastructure are foreseen (some deviations could of
course appear)

• integrate the code limiting the integration to the I/O
data management

• integrate the code to connect it to the other codes
(workflow structures)

Two main integration platforms are foreseen/supported:

• Docker (take-away option)

• Gateway (centralized option)

General integration strategy is the same for both platforms,
practical details could be different.

Integration check list

• Code runs standalone

• Environment is configured for the code to use IMAS

• Code can communicate with IDSs

• Code internal variables are converted to/from IDS format

• Code runs in the IMAS framework

Code runs standalone

• Code can be compiled and executed using available

compiler options

• All libraries required by the code are available and can

be loaded (via modules)

Software resources available on the Gateway:
https://wiki.eufus.eu/doku.php?id=namespace:software_resources

https://wiki.eufus.eu/doku.php?id=namespace:software_resources

Environment is configured

• Preconfigured set of modules (imasenv) exists that
includes all frequently used modules/libraries
 imasenv is coupled to/based on the particular IMAS module

 imasenv exists in two ‘complier oriented’ versions: gnu and intel

 imasenv includes both dependent on IMAS and independent on
IMAS modules

• Modules that are not listed in imasenv can be loaded
manually (if they are not conflicting with imasenv
modules)

• User’s specific module list could be gathered based on
the IMAS module

• User’s data structure should be configured beforehand in
order to be able to read/write data in IDS format.

Examples of the environment
modules

Code can communicate with IDSs

• Data stored in IDSs and to be read by the code or data
produced by the code and to be put in IDSs are managed by
the High Level Interface (HLI) routines (more on this see the
tutorial from Monday:
https://docs.psnc.pl/pages/viewpage.action?pageId=7087910
1).

• Communication chain (open->get->(process)->create ->put-
>close) can be developed by the user or can be generated
automatically in IWrap

• It is recommended to separate communication routine
(wrapper) if developed by the user from the main body of the
code

• For the examples of the wrapper routines in different
languages see
https://docs.psnc.pl/pages/viewpage.action?pageId=2408828
3

https://docs.psnc.pl/pages/viewpage.action?pageId=70879101
https://docs.psnc.pl/pages/viewpage.action?pageId=24088283

Internal variables are converted

• There are number of conventions used in IDSs that should be
taken into account when converting the internal code
variables; one example is the COCOS number used (11) but
there are more

• Conventions are explicitly stated in the Data Dictionary
documentation (reachable from the Gateway by typing
dd_doc in the command line after configuring environment)

• Time handling of the dynamical quantities in IDS can be done
differently: homogeneous time (1) vs inhomogeneous time (0)

• ‘Conventional’ grid to store data on is ‘flux’ grid (with
rho_tor_norm used as the ‘base’) in several IDSs, but options
available to store data on complex grid (general grid
description)

• Conversion process is not easily generalized, and need to be
performed in ‘code by code’ fashion

Code runs in IMAS framework

• Relevant modules are loaded in the interface routines

(wrapper, converter)

 python - import imas

 Fortran - use ids_shemas, use ids_rouitines

 C++ - include UALClasses.h

• In case Makefile is used to compile the source code (Fortran, C++),

it should be updated to include relevant options (in both compilation

and linkage steps). It is strongly recommended to use pkg-config

tool for this

