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Motivation ©

EUROfusion roadmap mission-2: Heat-exhaust systems

« capable of withstanding the large heat and particle fluxes of a
fusion power plant;

« allow as high performance as possible from the core plasma.

Foreseen to be achieved by producing ‘detached’ divertor
conditions, maintained by an active control system.

Inherently a multi-input multi-output problem (multiple performance
parameters and multiple actuators).
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Introduction

A. Perek et al., Rev. Sci. Instrum. 90, 123514 (2019)
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Other possible diagnostics for control
(not RT-ready): DSS (spectroscopy),
RadCam (Soft-X, Bolometer, AXUV),
Thomson, MANTISIla, MANTISIIb
mid/top-port views
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Introduction

MIMO control: Interaction is key
* Actuators affect multiple outputs

Stacking SISO controllers will lead to

>0

e« other behavior than based on the
individual SISO controllers
» extreme case: instability

Requires interaction analysis and

A

recombination
excitation

molecular processes

RT MANTIS

MIMO controller design techniques

See: Skogestad and Postlethwaite.
Multivariable Feedback Control, Analysis and Design (2007)
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Introduction ©

* Real-time detection of emission fronts with multi-spectral imaging (MANTIS)
* Impurity emission fronts (C-11l, N-Il) strongly related to local temperature

N\ * Actuation of front position by D2 fueling or N2 seeding
sensor: RT MANTIS

800 Hz

50% extinction
C-IIT / N-II

A

I @‘_T Controller(SCD)

T N2 E [1] A. Perek et al., Rev. Sci. Instrum. 90, 123514 (2019)
lommrmmm oo R T ' 2] T. Ravensbergen et al., Nucl. Fusion 60, 066017 (2020)
r:valv [ ' ’
actuato aive [3] T. Ravensbergen et al., Nat. Commun. 12, 1105 (2021)
[4] J.T.W. Koenders et al., 47th EPS on Plasma Physics, P1.1058
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Overview ®)

Main goal: setting up for MIMO control with different MANTIS camera’s

Delayed: main (full-time) person is missing and will start 1st March!

*  RT-image processing (based on past experiments): Improve and make current algorithms real-time
(not in the control system yet) for nitrogen and Balmer lines to determine recombination and
excitation regions.

* Qualitative RT-image processing: Qualitative real-time algorithms for the observation of nitrogen,
recombination and excitation (ionization) based on camera images only (based on ~ 5 cameras).

Hence, shifted focus to:

*  Simple-MIMO identification demonstration: Demonstrate MIMO system identification algorithms
developed in this proposal for the simplified case of D2 and N2. (initial testing RT-alg.).

Ongoing process:

* Selection of control targets: Scenario selection and determination on control targets is performed,
ongoing process.

* Integration DCS: Integration of algorithms into the digital control system TCV and verify real-time
algorithms.
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ENR WPs overview and progess ©

—

Main goal: setting up for MIMO control (P6) with different MANTIS camera’s

MANTIS development to determine loss-processes in 2D
Detachment analysis, scenario selection, setting control requirements

Conversion from off-line to real-time camera analysis (incl. machine learning)

_ MIMO system identification

Dynamic modelling for MIMO-control

_ MIMO feed-back control (and integration)
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WP1 — Determine loss-processes in 2D

Spectroscopic emissivity analysis

Emissivity of 4 Deuterium lines ADAS Collisional-Radiative
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Probability that multiple measured
lines are observed:

P(ne, Te,np) = P3_2Py2Ps 5

Rlower

P(ne, Te, 1) = P(Irgte), P(Rrate)

A. Perek et al. A spectroscopic inference and SOLPS-ITER comparison of flux-
resolved edge plasma parameters in detachment experiments on TCV,
submitted to Nuclear Fusion.
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e L-mode
. PEX250kA & °|
« PEX 320 kA R

 H-mode
 Small-Elms, 1MW NBH (+ ECRH later)
* Elmy 170kA, 1.3MW NBH (+ ECRH later)
* Elmy 170kA, 1.3MW NBH (+ ECRH later)

» Possible extension to more complex shapes / higher |
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WP2 — Scenario and control requirements ®

 Actuators

» Gas fueling and/or impurity seeding with weakly (N,) and strongly
(Ne, Ar, ..) recycling species

* Input power (NBH, possibly ECRH)

* Performance variables
Neutral compression (baffles)
Location of CIII/NIl impurity emission front (inter-EIm)
lonization / recombination in the divertor

Upstream conditions, e.g. <n_>, P

seperatrix

» l|deally go for robust control approach (weight functions)
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WP2 — Scenario and control requirements (@)

Simultaneous (MIMO) control upstream density and detachment

« detachment control (using MANTIS)

« upstream density control (more complicated no direct sensor)
« using FIR in observer to determine density profile (upstream density)
* model based synthesis of upstream density control

Addressing this:
» dynamics multiple valves with both core and exhaust tasks

» observer development (RAPTOR-RAPDENS) to RT-reconstruct
density profile (together with RT-04 Thomas Bosman, Federico
Felici)
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WP3 — Conversion to RT (neural networks)

Filtered camera images of
the Balmer line emission

Emissivity of the Balmer series

Tomographic h J
e inversion ‘B
— ~10s per o
{ frame per e A ;
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1 R[m] R [m] R [m]

Those two steps combined must be speed up by at least 6 orders o
magnitude for real-time use. This will be attempted using Machine
Learning:

e Tomographic inversion — proposal submitted for Marconi.

® Bayesian inference — convolutional neural networks.
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WP3 — Conversion to RT (neural networks) ©

Filtered camera images of Emissivity of the Balmer series
the Balmer line emission
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WP4 — MIMO System ldentification ©

Multiple-input multiple-output (MIMO)

MIMO control: system identification experiment Dz actuators Nz

with periodic perturbation. Design controller on S S :

resulting FRF Matrix. Hﬂ ‘

arye . . . . pe . NH Tm ]‘.U-l 1; ) : :“ . [”] §

Filling the matrix with SISO identification: e ! H‘N - :

* Requires (at least) 1 experiment : ‘\\1
per actuator é I

Filling the matrix with tailored MIMO . i i '\\i.l

identification: i i |

e Requires only 1 experiment in total Cri . ll " . . -
* Note, trade-off in quality is present 7 -y 7 i '\\N
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WP4 — MIMO System ldentification ©
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WP4 — MIMO System ldentification .

D2 divertor valve #71723 N2 divertor valve
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WP5 — Dynamic modelling for control (+ENR-SW)

A one dimensional code to model

x10%°
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WPS — Dynamic modelling for control

7N\
yo y(1) DIV1D
* Complementing SOLPS with DIV1D: SOLPS
(1) Fit on SOLPS °
(2) Transition between points . °
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°
o
* Requires Methods
F: mapping 2D to 1D ug u(t)
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DIV1D—> semi-heuristic transfer function models
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WPS5 — Dynamic modelling for control ©
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Conclusions

/
(/

Made deliverables:

. Simple-MIMO identification demonstration: Demonstrate MIMO system identification algorithms developed in this
proposal for the simplified case of D2 and N2. (initial testing RT-alg.).

Intermediate conclusion:
. Strong coupling between (NII/ClII) fronts necessitates MIMO-control (multiple valves) but limits independent control

Next year:
Main (full-time) person is missing and will start 1t of march:

. RT-image processing (based on past experiments): Improve and make current algorithms real-time (not in the
control system yet) for nitrogen and Balmer lines to determine recombination and excitation regions.

. Qualitative RT-image processing: Qualitative real-time algorithms for the observation of nitrogen, recombination
and excitation (ionization) based on camera images only (based on ~ 5 cameras).

Ongoing process:
. Selection of control targets: Scenario selection and determination on control targets is performed, ongoing process.

. Integration DCS: Integration of algorithms into the digital control system TCV and verify real-time algorithms.

First MIMO control experiments!
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