

ENABLING RESEARCH PROJECT

Electronic interactions of slow ions and their influence on defect formation & sputter yields for plasma facing components

Monitoring of 2021 activities 1st of December 2021

https://wiki.euro-fusion.org/wiki/Project_No5

https://indico.euro-fusion.org/category/305/

Aalto University School of Science

- □ Aim;
- □ Working-packages & schedule;
- □ Main results obtained & work in progress;
- □ Achievement of Scientific Deliverables foreseen for 2021;
- □ Activities foreseen for 2022.

TECHNISCHE UNIVERSITÄT Alto University School of Science WIEN

To investigate underlying quantities fundamental for sputtering and defect formation from plasma-wall interaction:

- \rightarrow Energy deposition of plasma species in wall materials.
- \rightarrow Interaction potentials with wall species.

key input variables for computer codes used to model erosion and implantation in plasma facing components.

Synergistic study:

- Experimental measurements with high accuracy.
- Theoretical calculation from first principles.
- To assess the sensitivity of these quantities to the presence of defects (ion irradiation).
- Benchmark the fundamental quantities by measuring sputtering yields with high accuracy.

Materials:

ITER-grade W, Fe and EUROFER steel.

ENR – SBM - 2021-12-01

Schedule

Aalto University School of Science

Updates: Deliverables and Milestones per calendar year

Table: Revised deliverables (D) and milestones (M) schedule according to the working-packages (W-Ps) per calendar year.

	2021		2022				2023				2024	
W-Ps	5-8	9-12	1-3	4-6	7-9	10-12	1-3	4-6	7-9	10-12	1-2	3-4
W-P 1: General management	D1.1	D1.2 M1.1				D1.3 M1.2				D1.4 M1.3		D1.5 M1.4
W-P 2: Sample preparation/ characterization	D2.1, D2.2, D2.3, D2.4, D2.5 M2.1					M2.2 M2.3		M2.3			M2.3	
W-P 3: Electronic energy loss measurements	D3.1 M3.1			D3.2		M3.2	D	D3.3		D3.4		M3.4
W-P 4: Interatomic potential measurements			D4.1	D4.1 D4.2			M4.1	D4.3				M4.2
W-P 5: Sputtering yields and BCA simulations	D5.1			M5.1	M5.1 D5.2		D5.3 M5.2		D5.4 M5.3			
W-P 6: Ion irradiation experiments		D6.1			M6.1 D6		5.2	D6.3		D6.4 M6.2		
W-P 7: TD-DFT and Molecular dynamics		D7.1		M7.1	D7	7.2	M7.2	D7.3 M7.3	D7.4 M7.4	D7.4 D7 M7		7.4 7.5

UPPSALA UNIVERSITET

□ Working-package 2 (W-P 2) main deliverables/milestones for 2021:

 \rightarrow Characterization of the chemical composition of the pristine samples (Fe, W, EUROFER) by combined ion beam based techniques (UU), as a protocol for the standard quality control.

TECHNISCHE

UNIVERSITÄT

WIEN

WIEN

Aalto University

School of Science

Electronic Stopping Power

Stopping data for Fe & EUROFER in the medium/low energy regime Next steps: low energy regime ($E_0 \le 10$ keV) [PhD student: Jila Shams]

UNIVERSITET

M. Draxler et al. Vacuum, 73 (2004).

EUROFER cleaning cycle:

Argon sputtering/Annealing (300°C)

Analytical Chamber: Sputtering cleaning, heating, e-beam evaporation, AES, and LEED

ToF-LEIS (1-10 keV):

- Surface sensitivity.
- Sub-monolayer resolution.

ENR – SBM - 2021-12-01

TU TECHNISCHE UNIVERSITÄT WIEN

(1 eV - 10 keV)

Aalto University School of Science

Working-packages

Ion irradiation experiments

Working-package 6 (W-P 6) main deliverables/milestones for 2021:

Define irradiation conditions: \rightarrow ions, energy, fluencies within different (ex-situ and in-situ) set-ups.

> Energy: 0.5-4 keV, D_2^+ Fluence $\approx 1 \times 10^{22} \text{ D/m}^2$.

 \rightarrow **Ex-situ:** Dedicated low-energy ion implanter.

Working-packages

17

TD-DFT and Molecular dynamics

Working-package 7 (W-P 7) main deliverables/milestones for 2021:

 \rightarrow MDRANGE simulations of ion implantation ranges and sputtering yields from surfaces with evolving composition. (A. E. Sand, Aalto University, Finland).

- Changed schedule: begun MD simulations of sputtering (D7.4) with existing MD model, in response to TU Wien's preliminary QCM measurements showing unexpected results compared to SDTrimSP (reported in September meeting).
- Investigating angular dependence and dependence on surface morphology
- Status of TD-DFT: expected to start in January 2022.

Principle of **MDRANGE**: efficient ion range calculation by considering only recoil and small region of target in MD framework.

Working-packages

TD-DFT and Molecular dynamics

Working-package 7 (W-P 7) main deliverables/milestones for 2021:

 \rightarrow MDRANGE simulations of ion implantation ranges and sputtering yields from surfaces with evolving composition. (A. E. Sand, Aalto University, Finland).

- Preliminary calculation with existing model in **MDRANGE**:
 - H ions (70 keV) in Fe and Cu (for comparison to experimental work at UU)
 - < 1% are backscattered

UNIVERSITET

• Next steps: code development to get angles of scattered ions, implement selective output to facilitate better statistics.

Achievement of

Scientific Deliverables (2021)

Completed:

 \rightarrow IBA characterization of pristine materials (W, Fe, and EUROFER).

 \rightarrow Stopping power of pristine PFCs samples in medium range:

 \rightarrow Fe: from 4 to 330 keV for protons (up to 2 MeV).

- \rightarrow W: 20 to 6000 keV for protons and 50 to 9000 keV for helium.
- \rightarrow QCM installation in UU set-up.

In Progress:

- \rightarrow EUROFER: from 20 to 330 keV for H and He.
- \rightarrow Sample characterization/preparation in the low-energy experimental system.
- \rightarrow Stopping power in the low of pristine PFCs samples in low energy range.
- \rightarrow Sputter yields D₂ on PFCs samples.
- → Theoretical calculation of electronic stopping power of light ions in pristine W, Fe and Fe-alloys using TD-DFT calculations.

Activities foreseen for 2022

- □ Characterize damaged samples and continue monitoring pristine samples for quality control.
- □ Stopping power of pristine PFCs samples for light ions (sub-keV regime).
- In-situ preparation of the pristine crystalline Fe and W samples for ToF-LEIS/MEIS and angular scans.
- □ Sputtering yields and angular distributions of pristine W and EUROFER97 samples.
- **Ex-situ** ion irradiation experiments on the PFCs samples at UU.
- □ Theoretical calculation of electronic stopping power for random trajectories of light ions in pristine W, Fe and Fe-alloys using TD-DFT calculations.

rsity cience

EXTRAS

