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= COMPASS Profiles of the'Mach number
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= COMPASS Sheath scaling
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:é COMPASS Understanding the‘meehanism of subsonic flow (i)
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Is sheath transport diffusive? Numerical experiments
Mach number profiles
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:é COMPASS Understanding the mechanism of subsonic flow (ii)

Adjusts to “keep” given current lon friction lon - electron friction

with neutrals
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= COMPASS De-magnetization of plasma
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Classical sheath Plasma is de-magnetized
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= COMPASS Analytic model
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Particle and momentum conservation equations .+ BC depend on the sheath collisionality

g ) ~I. as well as on the current
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:é COMPASS Analytic model/comparison with PIC results
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= COMPASS Extrapolation of results
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Weak dependence of M, on X,
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Z COMPASS ITER modelling (SOLPS-ITER)
N
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Neglect current for the moment since this formula
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= COMPASS ITER modelling: results
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[D. Moulton ISFN 9.2021]
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:g COMPASS conclusions
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» Divertor plasma sheath will be collisional in next fusion devices. Plasma flow in this sheath is sub-sonic
and characterised by a significantly lower plasma particle and heat fluxes to the wall (for a fixed
divertor density)

» The Mach number at the SE depends on plasma collisionality (charge exchange and Coulomb); contrary
to this the sheath potential drop depends on collisionality weakly

» A new definition of the magnetic presheath entrance (SE) is proposed:

a nearest point to the wall surface, where plasma is still magnetised.

For collisionles limit it reduces to the Bohm-Chodura condition — M, =1

» First ITER simulations (D. Moulton) with updated boundary condition show no significant change of the
plasma divertor fluxes for the moderate collisionality case; although plasma density in the vicinity of the
target significantly enhances (by the factor ~2)
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:é COMPASS On electron-lon _friction force at the SE
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Electron and ion (D*) VDFs at the high collisional sheath edge for different current regimes (I = J/J,) from the PIC model
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:é COMPASS Backup.:sSimulation model (BIT1)
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Particle and heat source
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:é COMPASS Backup: BIT1
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/ y synthetic diagnostic Y
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« Massively parallel (scaling >4x10%)

Outer

. Nonlinear interaction between plasma,
divertor

neutral and impurity particles, linear PSI
(all together ~1000 processes)

Atomic and molecular processes used in presented PIC simulations

e+tM>e+M Elastic M — molecule, or atom
e+M->e+ M* Excitation (electronic, vibrational, rotational) A — atom
e+M->2e+M lonization

e+tM>e+A+B Dissociation A+M>A+M Elastic
e+t+M->2e+A"+B Dissociative ionization A+M-> A+ M* Excitation
e+M*>A+B Dissociative recombination At+M>A+M* Charge exchange
e+ M* > M+vh Recombination A+M > A*+M Charge exchange
2e+M*>e+M Three-body recombination A+M2>A+B+G Dissociation
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