
Eiron: A toy model of EIRENE for performance
studies

Oskar Lappi

November 9, 2021



Problem

• EIRENEs core computational loop was originally designed to
be serial
• Existing MPI-parallelization exhibits good runtime scalability,

but memory usage also scales linearly with number of
processes
• Existing OpenMP-parallelization exhibits poor scalability.

Scales to ca. 4 threads, after that scaling is negative: more
threads =⇒ longer runtime.



OpenMP scalability

2D-D slab sample, develop_openmp branch, -DOPENMP=ON
NOTE: x-axis log-scale, y-axis linear scale



OpenMP scalability, Huw Leggate

ITER test case, develop_openmp branch
NOTE: log-log plot



OpenMP scalability

Measurements are not directly comparable, we used different test
cases and machines. Haven’t found Huw’s old reports of the 2D-D
slab case
E.g. Mahti, the machine I used, uses AMD Rome CPUs, which
have a core complex with 4 cores that share a cache. This implies
the bottleneck for the 2D-D slab case is main memory access on
Mahti.



Where is the bottleneck

• Most of the time in EIRENE is spent writing responses in
eirene_update
• Next most time in eirene_fpath



Plan

• Create a toy model with the same overarching computational
structure as EIRENE but without requirements for physical
correctness
• Using the toy model, produce a parallelization strategy that

scales
• The design can then be transferred to EIRENE



Eiron: the toy model

Eirene (Eιρηνη)
• Athenian goddess of peace

Eiron (Eιρων)
• Athenian comedy character



Eiron
Scores particles traveling in polyline paths on a 2D Cartesian grid



Eiron
Scores particles traveling in polyline paths on a 2D Cartesian grid



Eiron
Scores particles traveling in polyline paths on a 2D Cartesian grid



Eiron
Scores particles traveling in polyline paths on a 2D Cartesian grid



Eiron
Scored tallies written to separate memory buffers per species (and
tally)



Eiron

Requirements
• Record multiple quantities to a cartesian grid consisting of the

combined contribution of many polyline particle paths
• Grid is indexed by (in rising order of stride): subspecies, x, y

species, tally
• Particles may change species along their path

Main components
• Path generator
• Response tallier

The project is not at a state where I can show any concrete
measurements, however we can already use these component
definitions to explore and analyze different designs.



Component: Path generator

• Generates particles from line sources
• Follows the particle, generating collisions with background

particles

Squares components (procedures/actors)
Circles state
Arrows data flow



Component: Tallier

• Calculates contribution of particle-background interactions to
each cell
• Writes contributions to grid. grid[i]←− grid[i] + x

Squares components (procedures/actors)
Circles state
Arrows data flow



Existing parallelization strategy, by particle



Existing parallelization strategy, by particle

Issue: processes write to the same memory regions. They share
mutable state.



Existing parallelization strategy, by particle

Intersecting paths =⇒ data dependence =⇒ synchronization
necessary for correctness



Existing parallelization strategy, by particle

Paths map to same cache line =⇒ false sharing =⇒ cache
invalidation



Existing parallelization strategy, by particle
Data-flow: shared mutable state
If we parallelize the tallying by particles, talliers will need
concurrent access to the same memory resource. This concurrent
access requires synchronization and causes cache invalidation.



Existing parallelization strategy, by particle
Challenge: shared mutable state
Adding more processes that write tallies increases the probability
that two processes share a cache line at any moment in time =⇒
the cost of synchronization increases with the number of threads.



Shared mutable state, hardware view



Shared mutable state, hardware view



Shared mutable state, hardware view



Shared mutable state, hardware view

200X slower than best case scenario



Shared mutable state, hardware view

40X slower than best case scenario



Existing parallelization strategy, by particle

Summary
• Access to the grid is the bottleneck
• If the bottleneck has negative scaling, so does the entire

system
• Need to find a strategy that does not produce negatively

scaling bottlenecks



Alternative parallelization strategy, by memory region
Particles have data dependencies, but luckily, all data dependencies
are local to a grid cell =⇒ operations on disjoint regions of
memory are independent.
E.g. every cell with the same species and tally index is an
independent region of memory.



Alternative parallelization strategy, by memory region

Idea: split particle path into sub-paths by species



Alternative parallelization strategy, by memory region

Idea: split particle path into sub-paths by species



Alternative parallelization strategy, by memory region

Add in domain decomposition



Alternative parallelization strategy, by memory region

Idea: split particle path into sub-paths by species and subdomain



Alternative parallelization strategy, by memory region

If we conceptualize data flow from path generation to tallying in
the form of a channel, we can scale up whichever of the two stages

is the bottleneck



Alternative parallelization strategy, by memory region

We can also load balance proportional to particle species
predominance. Either by adaptive grid decomposition or by

duplicating busy memory regions.



Alternative parallelization strategy, by memory region

Summary
• Data dependencies are local =⇒ can organize tallying into

independent tasks, one process per task
• workloads can be balanced by varying the size of the task or by

assigning multiple processes to tasks
• suitable for dynamic load balancing (more processes can be

spawned)
• Polylines fit into relatively small memory buffers

• suitable for network transmission
• this architecture can be used to create a distributed program
• MPI is a better fit for this design than OpenMP



Alternative parallelization strategy, by memory region

• The general concepts which inform the design are well
understood and similar designs have a proven track record
• Result of a performance comparison can be predicted to favor

this design over the old one almost certainly
• However, the hardest part of a design is the implementation.

By implementing this design in Eiron first, we will experience
the challenges of implementing it first-hand. The solutions to
these challenges in the Eiron implementation can then be used
to guide the implementation of the design in Eirene.



Eiron, design considerations

• A modular design is important, so that different axes of
parallelization can be explored
• Creating a library allows for multiple binaries to be created,

which allows for more flexibility in the architecture of the
system
• Both test-suites and benchmark-suites should be created, to

allow for easy comparison of designs
• APIs need to be designed with testing and performance

measurements in mind



Eiron, project status
What’s been done
• A modular design of logical components that compose nicely
• A functioning serial tallier
• A functioning particle sources (generates starting points of

particle paths)
• Particle modeling in progress
• Collision probability modeling in progress
• Collision result modeling in progress

What’s yet to be started
• tally modeling
• line integrals
• decomposition along species/tallies
• domain decomposition
• work scheduling/coordination much work here



Thank you

Questions?


