

WP TE priorities for the He campaigns

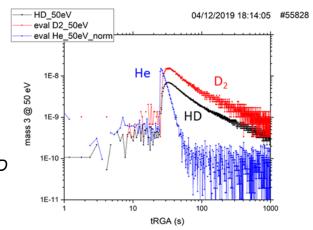
Antti Hakola
On behalf of the WP TE TFL team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Overview of past He campaigns: AUG, TCV, JET, and WEST

- He campaigns carried out in 2015 and 2019 on AUG, in 2015-2016 on TCV, and in 2019 (4 weeks, 17 EUROfusion sessions) on WEST
- Focus points of the campaigns
 - ✓ AUG 2015: ITER baseline, ELM mitigation, detachment, plasma-wall interactions (W fuzz and changeover)
 - ✓ AUG 2019: plasma-wall interactions (W fuzz), detachment, pedestal studies, W transport, I-mode
 - ▼ TCV 2015-2016: plasma-wall interactions (ECRH conditioning), SOL power widths and power loads, filamentary transport
 - ✓ WEST 2019: changeover between He and D in a full W device, W sources in He and interactions between He and W plasma facing components
 - ✓ JET ILW 2020: He pulses during diagnostics calibration and LH transitions but not a full He campaign
- Not too many results available from the analyses
 - ✓ Exceptions are plasma-wall interaction topics (e.g., W fuzz, changeover studies, wall conditioning) with several conference contributions and journal articles
 - ✓ For the rest, mainly Task Force Meeting talks exist

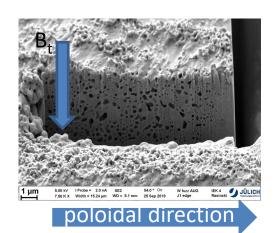
Highlights from AUG, TCV, and WEST

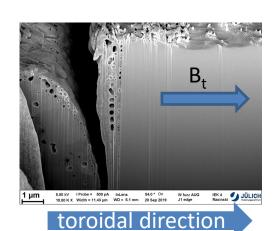

- Wall conditioning in He (ECWC, ICWC) and changeover from D to He or He to D
 - ✓ Remaining D (respectively He) ratio quickly falls below 10% during a changeover
 - ✓ WEST: He released much faster (~50 s vs. ~700 s) than D
 - ✓ AUG: He-ICWC can be applied to result in clean plasmas with a He content of >80%
 - ✓ TCV: An optimized combination of vertical and radial magnetic fields determined for efficient ECWC and to sustain standard ohmic D₂ plasma

He and D concentrations as a function of shot number for a series of D to He and He to D changeover phases

Post pulse outgassing for He and D

R. Bisson et al., NME 2021




Highlights from AUG, TCV, and WEST

Erosion and W fuzz studies in Helium

- ✓ Sample surfaces tend to become covered with thick co-deposited layers → extra W sources in the main chamber?
- ✓ AUG: In the absence of ICRH and boronizations, clear signs of fuzz growth and destruction observed at different distances from the strike point; **NB!** The role of Mo to be checked
- ✓ WEST: Significant He trapping during the discharges but conditions only marginally favorable for fuzz formation
- ✓ WEST: W source in He is a factor of two lower than in D and clear inner/outer divertor asymmetry observed


S. Brezinsek et al., ITPA DiVSOL 28.06.2021

Highlights from AUG, TCV, and WEST

Detachment in He plasmas

- ✓ High detachment threshold observed on AUG compared to D \rightarrow role of molecules!?
- ✓ No roll-over seen on TCV and low radiated fraction may indicate less C impurities!?

S. Henderson et al., MST1 TFM 09.11.2020

ELM characteristics and mitigation

- ✓ Substantial effort made to create a target plasma with sufficiently large ELMs and then try to mitigate them using RMPs (AUG): H NBI, small He puff rate & Ar frosting
- ✓ A moderate mitigating effect (factor 3 energy loss) found at q_{95} ~3.7, no significant moderation at q_{95} ~4.2, and no ELM suppression
- ✓ Outlook: With moderate shaping one could try to fully suppress ELMs at q₉₅~3.7

Highlights from JET

- NB! The He mini campaigns very limited in scope and volume and no He beams used
- L-H transition power thresholds
 - ✓ Density minimum for the L-H power threshold significantly higher (>50%) in He than in D in JET-ILW → different from AUG results!?
 - ✓ Indicated little benefit in terms of H-mode access to operate in He!?
- W erosion in JET-ILW in He plasmas
 - ✓ Erosion during ELMs dominates the total W source in D and He plasmas
 - ✓ Intra-ELM sputtering in He plasmas prevails by a factor of 4 over inter-ELM sputtering
 - ✓ In He plasmas, Be erosion on the first wall enhanced
 - ✓ Large in/out asymmetry of the intra-ELM W sources in He plasmas (see also WEST results)

New He campaigns under WPTE

- Due to the interesting past results but still limited database, He campaigns are foreseen in 2022
 - ✓ AUG: the last two weeks of July
 - ✓ JET: a 3-month period, tentatively from July to September + selected C42 experiments (clean-up campaign after DT and TT where He plasmas foreseen)
- Main goals of the He campaigns:
 - ✓ Provide feedback to ITER for planning the PFPO operational phase
 - Develop scenarios for He plasmas with low D and H contents
 - o Explore H-mode operations and ELM control in He
 - Assess detachment characteristics in He compared to H or D plasmas
 - o Characterize key plasma-wall interaction phenomena in He
 - ✓ Perform experiments in multiple devices for better understanding of the underlying physics
- Campaigns in WPTE devices have the following high-level scientific objectives
 - ✓ Access H-mode in He
 - ✓ Mitigate risks related to transients (e.g., disruptions) and suppress ELMs
 - ✓ Understand transport phenomena and impurity behaviour in He
 - ✓ Operate with a radiative divertor and control heat loads in He
 - ✓ Select proper operational domain to ensure sufficient divertor and limiter lifetime

Set-up for the campaigns

- The TFLs have assessed the needs for He campaigns on AUG and JET based on the outcomes of two dedicated Task Force meetings (19 and 26 July, 2021)
 - ✓ Headlines with priorities (Priority 1, 2, 3) identified for guiding the community.
- Next step will be transferring the list on the following slides into a Call for Proposals to be launched in December
- Boundary conditions
 - ✓ Limitations to the NBI operation
 - o Only H beams foreseen on AUG
 - Power limited to ~14 MW on JET with He NBI
 - Still under discussion if He beams will be used on JET and if yes for how long
 - ✓ Low density operations challenging due to pumping capabilities
 - However, Ar frosting can be applied at least on JET
 - \checkmark T_i measurements a known issue \rightarrow can be addressed by injection of impurities on AUG
 - ✓ Plasma-wall interaction studies with the divertor manipulator block an entire day on AUG
 - ✓ Tile removal next to impossible after the He campaign on JET
 - ✓ Clean-up in the end of operations required (incl. beam boxes), especially on JET.

Priority 1 headlines

Priority 1 - Headline	WP TE comments	IRP category (ITER)	Devices
Clarifying the LH power threshold and development of ELMy H-mode scenario in He	 AUG-JET comparison high on the agenda Investigations in wave-heated plasmas to maximize ITER relevance Would include impact of seeding on He confinement (AUG mainly) 	Cat 1	AUG JET
Characterization of ELMs and their control with 3D fields in He	 Essential to test the efficiency of RMPs in the presence of ELMs Can be combined with W sputtering investigations via piggy back 	Cat 1	AUG
Understanding detachment threshold and SOL transport in He	 Present database very scarce Includes studies related to broadening of the heat-flux profiles on the targets 	Cat 2	AUG JET
Plasma-wall interaction studies in He	 Formation of W fuzz and modification of PFC surfaces, incl. recrystallization Main-chamber vs. divertor erosion, comparison between He and D Sputtering during and in-between ELMs Retention with available diagnostics 	Cat 1 & Cat 2	AUG JET*

Addressing successfully (most of) the Headlines above requires achieving a robust ELMy H-mode scenario in He

* No sample removal possible

Priority 1 headlines

Priority 1 - Headline	AUG relative share*	JET relative share**	JET relative share - requiring He beams
Clarifying the LH power threshold and development of ELMy H-mode scenario in He	25%/8 shots	30%/min 15 sessions	Min 15 sessions
Characterization of ELMs and their control with 3D fields in He	19%/6 shots	N/A	N/A
Understanding detachment threshold and SOL transport in He	19%/6 shots	10%/min 5 sessions	Min 3 sessions***
Plasma-wall interaction studies in He	25%/8 shots	30%/min 20 sessions	Min 15 sessions

^{*} Assuming 40 shots over the course of 2 weeks and 20% contingency (of the absolute share)

- Approximately 2/3 of the JET experiments under the headlines would require He beams and 1/3 would greatly benefit from He beams
- Minimum reasonable program at JET would correspond to ~2 month-long He campaign to meet the high-level objectives (~60 sessions + contingency)

^{**} Assuming 10 sessions/week, on average 7 good pulses/session, and ~100 sessions for the campaign

^{***} Exact number can only de determined following the Call for Proposals

Priority 2 and 3 headlines

Priority 2 - Headline	WP TE comments	IRP category	Device
Determining fuelling efficiency in He	 Would require extensive modelling and mining of old data Need to be combined with interpretative SOL modelling 	Cat 2	AUG JET
Main-ion and impurity transport in He	 Can be largely done piggy back or during dedicated phases of the discharges 	Cat 2	AUG JET

Priority 3 - Headline	WP TE comments	IRP category	Device
Fast-ion studies in He	 Largely piggy back studies by using FILD and FIDA during other discharges Scope of JET program TBD following the Call for Proposals 	Cat 3	AUG JET
Changeover from D to He and He to D	 Extensive database already collected in the past on AUG and WEST → this exercise would consume a large number of plasma time Main issue is to ensure the presence of the key diagnostics team on-site On JET, would contribute to machine clean-up 	Cat 3	(AUG)* JET

Priority 2 and 3 headlines

Priority 2 - Headline	AUG relative share*	JET relative share**	JET relative share - requiring He beams
Determining fuelling efficiency in He	6%/2 shots	5%/min 4 sessions	Min 2 sessions***
Main-ion and impurity transport in He	6%/ 2 shots	5%/min 4 sessions	Min 0 sessions
Priority 3 - Headline	AUG relative share*	JET relative share	JET relative share - requiring He beams
Fast-ion studies in He	0%	5%/min 4 sessions	Min 2 sessions***
Changeover from D to He and He to D	0%	5%/min 4 sessions	Min 2 sessions
Others	AUG relative share*	JET relative share	JET relative share - requiring He beams
Outstanding ideas	From contingency	10%/min 4 sessions	Min 2 sessions***

^{*} Assuming 40 shots over the course of 2 weeks and 20% contingency (of the absolute share)

- Approximately 2/3 of the JET experiments under the headlines would require He beams and 1/3 would greatly benefit from He beams
- Minimum reasonable program at JET would correspond to ~2 month-long He campaign to meet the high-level objectives (~60 sessions + contingency)

^{**} Assuming 10 sessions/week, on average 7 good pulses/session, and ~100 sessions for the campaign

^{***} Exact number can only de determined following the Call for Proposals