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RABBIT: Real-time model for the NBI fast-ion distribution

Motivation:
● Fast ion distribution function is required for instance:

● Heating profiles for transport calculations
● pressure and current-drive for equilibrium 

reconstructions
● Sophisticated simulation codes exist (e.g. 

TRANSP/NUBEAM based on Monte Carlo), but long 
computation time ( ~ 30 s per time-step )

● → Too slow for real-time applications
(e.g. discharge control systems, real-time transport 
solvers like RAPTOR)

● → Develop fast model
Rapid Analytical Based Beam Injection Tool – 
RABBIT [M. Weiland, NF 2018]
( ~ 20 ms per time-step )

TRANSP fast-ion distribution function
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Kinetic equation

Kinetic equation for distribution function f(x, v, t)

+ Source

Orbit effects

collisions 
(e.g. slowing down, 
pitch angle scattering)

Source = NBI 
depositionTime dependence 

(=0 for steady state 
solution)
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)
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Beam deposition (birth profile)

● Injection of fast neutrals into the plasma → Ionization → 
newly “born” fast ion

● Fast-ion birth rate = - (beam attenuation rate)
● Calculation of beam attenuation:

BESFM Code by A. Lebschy, R. Dux, IPP
● We use the simplest geometry: NBI as thin line
● Good approximation for attenuation – for birth profile, 

we need to take into account the beam width:

NUBEAM 
MC calculation

center of beam = 
calculation grid 
for BESFM

● Assume a Gaussian broadening with standard deviation σ(l),  l = coordinate along beam,
σ(l) defined by NBI parameters (e.g. divergence)
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Analytic model for the poloidal beam width

● We assume Gaussian spreading along 
orange line (standard deviation σ)

● Assume circular concentric flux surfaces
● Transformation between flux coordinate ρ 

and geometric radius r based on ratio at B:
r(ρ) = ρ * ( rb / ρb )

● → Crossings    with ρ-cells can be 
calculated analytically

● → Contribution into i-th cell ρi:

● Correction for plasma elongation:
Scale beam width σ according to elongation 
b/a at B.

B

h1l

h2l

h2u

rb
beam

θ αβ

h1u

ρi

ρi

poloidal plane R

z
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Beam deposition (birth profile) with beam-width correction

● Taking into account a Gaussian broadening of the beam 
leads to good agreement with TRANSP/NUBEAM
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)
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Analytic solution of the Fokker-Planck equation

● Solution [Cordey/Core 74]: Legendre polynomials

vC, v0 : critical, injection velocity

source:
injected ions

(permanently)

   source term                            
     S: deposition, v0: injection velocity (mono-energetic)

K(ξ): broad pitch distribution              

slowing down pitch angle scattering speed diffusion

● Uniform plasma solution, i.e. each radial cell is independent of each other, 
no particle trapping etc.

● A correction for speed diffusion is applied above injection energy.
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Adding the effect of speed diffusion (above injection energy)

   source term                            
     S: deposition, v0: injection velocity (mono-energetic)

K(ξ): broad pitch distribution              

slowing down pitch angle scattering speed diffusion

● Speed diffusion creates high energy tail above the 
injection energy

● assuming v ≈ v0 :

● Only few particles, but high energies → relevant for 
e.g. fast-ion pressure and neutron rates

injection 
energy
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The full distribution function in the plasma center

● For full distribution function, add up all 3 energy components of NBI
● Comparison to TRANSP shows good agreement!

TRANSPModel (w/o speed diffusion)
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Density and heating profiles

● In the end, we are interested in integrals of f, e.g.:
Heating power (to electrons and ions), fast-ion pressure and current drive

● These integrals can also be solved analytically. Due to orthogonality of the 
Legendre polynomials, only first few moments are necessary (l=0, 1) 

● E.g. fast-ion density:

● Profile shapes do not (yet) agree well, due to missing orbit-effects

heating to 
ions

heating to 
electrons
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

● In MC codes (e.g. NUBEAM)

● MC representation of source

● Calculate orbits for each MC marker

● Apply collision operator during 
orbit steps

● For real-time: Only ad-hoc treatment of 
orbit effects possible
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ <Source>orbit

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

● In MC codes (e.g. NUBEAM)

● MC representation of source

● Calculate orbits for each MC marker

● Apply collision operator during 
orbit steps

● For real-time: Only ad-hoc treatment of 
orbit effects possible
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How to include the effect of first fast-ion orbit

● Orbit effects lead to a broadened deposition (towards the plasma 
center) and to changes of the pitch-distribution in the velocity space

● They can be taken into account, by averaging the deposition over the 
first orbit:

➔ assume that slowing-down process starts on random position of 
first orbit

➔ neglect orbit effects during slowing down

example for banana orbit:

birth position
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● Monte-Carlo orbit-average:
● Take MC representation of birth distribution
● Calculate orbit for each MC marker (e.g. ~5000)
● → too slow for real-time purposes (takes ~1s)

● Possible solutions:
● Either: Use approximation formulas for the orbits
● Or: Reduce number of orbits (strongly)

Monte-Carlo orbit-average is too slow for real-time applications
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Orbit average in RABBIT

● Calculate orbit only every n-th grid point
(4th order Runge-Kutta guiding center integrator)
Right: All calculated orbits for full energy component

● Here: 19 orbits x 3 energy components
→ possible within ~10 ms.

● In between: Shift neighboring profiles and interpolate linearly

l2, ρ2 l1, ρ1lb, ρb

S2 S1

l

[Weiland et al., NF, 2018]
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Orbit-average: compatible with beam-width model

● Up to now, we have calculated the orbit-average 
along the beam (at b).

● For the beam-width correction, we need to 
extrapolate from the ρ-cell containing b (ρref) along 
the orange line to other radial cells  

● E.g. from ρref to     (ρi):

(similar to the interpolation method)

b

ρi

ρi

rb
beam

θ αβ

ρref

S1

ρref  ρi

poloidal plane R

z
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S K1

Results of „RABBIT orbit average“ in good 
agreement with MC orbit average

● Test accuracy of the RABBIT rt orbit average: 
Compare it to Monte-Carlo orbit average (including fully realistic NBI geometry)

● Very good agreement is found, despite orders of magnitude difference in 
calculation time (~5000 orbits vs. ~60 orbits)

Birth profile (sum over all 
E components):

Average pitch v||/v of full-E 
component:
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Comparison to NUBEAM

Fast-ion density Heating to ionsHeating to ions

● Orbit-average leads to good agreement in profile shape

● Orbit-average has also an impact on volume-integrated heating 
distribution to electrons/ions and improves agreement

Heating to electrons
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)
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Time dependence

● Up to now: steady-state solution of Fokker-Planck equation fSS

● For time-dependent simulation: Discrete time steps Δt, assume inputs are 
constant during each time-step. 

● Model NBI with a δ-function-like pulse at the beginning of each time step

● Calulate how far the fast-ion pulse 
slowes down during time-step:

→ multiply fSS with box function 

Δt Δv

Δt
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Time dependence via train of fast-ion pulses

Time       step 1                         step 2

Σ

. . .

. . .

. . .

● If beam is still turned on in 
„step 2“, add a new pulse at 
nominal injection energy

● Final state of „step 1“ is 
starting point of „step 2“

● continue …
(add new rows each time-step, 
sum over rows)
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Time dependence

Time       step 1              step 2                        

Σ

. . .

. . .

. . .

● A row is terminated once its fast-
ion pulse has slowed down to zero.

● → If plasma parameters are 
constant, we eventually reach the 
steady state solution 

. . .
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Time dependence

Time       step 1                         step 2

Σ

. . .

. . .

. . .Te up (x10)
ne up (x5.4)

● Changes of plasma parameters are 
treated consistently

● E.g. different fSS in 2a and 2b, 
because the fast-ions in 2a have 
had a different „past history“ - 
they had different plasma 
parameters in „step 1“

2a

2b
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Steady-state solution procudes well-behaved gradients

Time-dependent solution,
background plasma changes 
over time

Time-dependent solution,
constant background plasma

→ still some discontinuities 
between individual pulses:
due to (weak) v-dependence 
of FP-coefficents

Steady-state solution, well-
behaved gradients

Technically this is done by 
setting the RABBIT time-step 
to a value larger than the 
slowing down time.

[Weiland et al., NF 2019]
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Comparison of time evolution with NUBEAM

   Q2        Q5       Q3       Q6        Q4       Q8        Q7

● Analyze discharge where different NBI 
sources (Q#) are interchanged

● Good agreement of temporal evolution
total

ions

total

ions

Q7

Q6

Q8

Q3 Q4

Q1 Q2 Q5 
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Summary & Conclusion

● For f, Rabbit solves                                               , where <σ> is birth profile averaged over first orbit
● f can be interpreted as flux-surface averaged fast ion (NBI) distribution function,  f(rho_tor, v, xi)
● For pitch xi, Legendre decomposition is used, such that the actual output is:

f_l (rho_tor, v)    with f(rho_tor, v, xi) = Sum_l (f_l (rho_tor, v) P_l(xi) )

● Potential issues: (?)
● Numerical problems with Legendre Polynomials:

● When NBI birth distribution is narrow in pitch xi, 
the Legendre series shows oscillations 
(that get worse with higher L‘s).

● Also: negative values of f

● Mapping of f(rho_tor, v, xi) to constants of motion (COM)
● No unique map to                                         and mu (                            )

v

xi
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