Impact of vibrationally resolved H₂ on the particle balance in Eirene simulations

<u>A. Holm¹, M. Groth¹, D. Wünderlich², P. Börner³</u>

¹Aalto University, ²Max-Planck-Institut für Plasmaphysik, Garching ³Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich

TSVV5 Regular VC#14, Oct 29th 2021

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

CRM
(Collisional Radiative Model)
 1000s of transitions and reactions Vibrational Electronic Reactions
• $n_{H_2}^{\text{tot}} \approx n_{H_2}(\nu=0)$
Local equilibrium
$\rightarrow \langle \sigma v \rangle (T_{\rm e}, T_{\rm i}, V_{\rm H2}, n_{\rm e})$

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

CRM

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

• The CRM used to derive the tabulated AMJUEL data has been phased out

→ The up-to-date CRM Yacora is used for CR calculations throughout this work

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

Conventionally, Eirene is run vibrationally-unresolved using effective rates calculated by an external CRM

Inclusion of vibrationally resolved H₂ in B2.5-Eirene simulations was observed to re-attach SOL plasmas*

- An >50% increase in the upstream density was required to recover detachment
- → Vibrationally resolving hydrogen molecules (H₂(v)) may affect the upstream density threshold for detachment
- This work will investigate and explain the observed effect in order to advance future code developments

Vibrationally resolved standalone Eirene simulations predict lower effective sinks due to:

- \rightarrow vibrationally resolved Eirene setup does not capture all CR effect
- \rightarrow transport of vibrational states

andreas.holm@aalto.fi 29.10.2021 9

* U. Fantz, NME (2001)

Molecular reaction rates increase by 2 orders of magnitude with increasing vibrational quantum number v 10-7

Molecular reaction rates increase by 2 orders of magnitude with increasing vibrational quantum number v 10-7

Molecular reaction rates increase by 2 orders of magnitude with increasing vibrational quantum number v 10-7

Molecular reaction rates increase by 2 orders of magnitude with increasing vibrational quantum number v 10-7

• Excitation over *v*>4 have negligible effect

Molecular reaction rates increase by 2 orders of magnitude with increasing vibrational quantum number v 10-7

- Excitation over *v*>4 have negligible effect
- CRMs derive the effective reaction rates
- 0D models, local equilibrium assumed
- \rightarrow The equilibrium vibrational distribution $P_{eq}(v)$ is calculated

CR modeling necessary when the system is in neither coronal or local thermodynamic equilibrium (LTE)

- Coronal equilibrium: excitation an ionization from ground state only, radiation-dominated
 - High temperature, low density
- LTE: each process balanced by its inverse reaction, collision dominated
 Electron densities in excess of 10²³ m⁻³
- Collisional and radiative process in competition for excited states
- → Multi-step processes

CR models linearizes large multi-species systems with density and temperature-dependent reaction

Linearization of the ODEs for suitable $n_{B1} \in B$:

$$\dot{\mathbf{n}}_{\mathbf{A}} = \mathbf{M}(\mathbf{n}_{B1}, \dots, \mathbf{n}_{BN})\mathbf{n}_{\mathbf{A}} + \mathbf{\Gamma}_{\mathbf{A}}(\mathbf{n}_{B1}, \dots, \mathbf{n}_{BN})$$

$$|$$
CRM densities External source

Rate matrix – dependent on the atomic and molecular physics included

- The CRM model consists of a plasma background $B = \{e^-, p, ...\}$ and the collisionally-radiatively modeled species $A = \{H^0, H_2, H^*, ...\}$
- $k, j \in A \text{ and } i, l \in B$
- $\mathcal{R}^k_{i,j}(T)$ is the reaction rate of collisions between i and j yielding k
- ${\rm A}_{j}^{k}$ is the Einstein coefficient describing radiative decay from j to k
- Γ_k describes production of k from reaction of species $\in B$

· The H2VIBR reactions were supplied to Yacora

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas
- $T_e \gtrsim 5 \; eV: \, n_{H2} \rightarrow 0 \; m^{-3}$ and ionization-dominated plasmas

- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas
- $T_e \gtrsim 5 \; eV: \, n_{H2} \rightarrow 0 \; m^{-3}$ and ionization-dominated plasmas
- No electronic transitions considered in the Eirene H₂(v) setup → P(v) density-independent

The effective dissociation rate is 20-60% lower for vibrationally resolved vs. unresolved H_2 in Eirene

- Effective rates are compared for the two setups, as P(v) not available
- The same H₂ loss processes are considered by both vibrationally resolved and unresolved setup

The effective dissociation rate is 20-60% lower for vibrationally resolved vs. unresolved H_2 in Eirene

- Effective rates are compared for the two setups, as P(v) not available
- The same H₂ loss processes are considered by both vibrationally resolved and unresolved setup

The effective dissociation rate is 20-60% lower for vibrationally resolved vs. unresolved H_2 in Eirene

- Effective rates are compared for the two setups, as P(v) not available
- The same H₂ loss processes are considered by both vibrationally resolved and unresolved setup

The effective dissociation rate is 20-60% lower for vibrationally resolved vs. unresolved H₂ in Eirene

- Effective rates are compared for the two setups, as P(v) not available
- The same H₂ loss processes are considered by both vibrationally resolved and unresolved setup

The effective dissociation rate is 20-60% lower for vibrationally resolved vs. unresolved H₂ in Eirene

- Effective rates are compared for the two setups, as P(v) not available
- The same H₂ loss processes are considered by both vibrationally resolved and unresolved setup
- Differences caused by omission of some CR processes in the H2VIBR data

n _e	10 ²¹ m ⁻³	10 ²⁰ m ⁻³	10 ¹⁹ m ⁻³
$\lambda_{mfp}^{P_{eq}(v)}$	~2.5 cm	~10 cm	>10 cm

n _e	10 ²¹ m ⁻³	10 ²⁰ m ⁻³	10 ¹⁹ m ⁻³
$\lambda_{mfp}^{P_{eq}(v)}$	~2.5 cm	~10 cm	>10 cm

- If the domain size is shorter than $\lambda_{mfp}^{P_{eq}(v)}$ the molecule escapes before reaching $P_{eq}(v)$
- → Shifts P(v) to lower v

Fluxes recycled as H₂(v=0) at the target

- Fluxes recycled as H₂(v=0) at the target
- H₂(v=0) is transported upstream before becoming vibrationally excited

- Fluxes recycled as H₂(v=0) at the target
- H₂(v=0) is transported upstream before becoming vibrationally excited

Eirene simulations on a 1D flux tube do not achieve ${\rm P_{eq}}(v)$ due to the finite $\lambda_{mfp}^{P_{eq}(v)}$

• Temperature and density gradients makes $P_{eq}(v)$ unachievable

Eirene simulations on a 1D flux tube do not achieve ${\rm P_{eq}}(v)$ due to the finite $\lambda_{mfp}^{P_{eq}(v)}$

- Temperature and density gradients makes $P_{eq}(v)$ unachievable
- Transport upstream results in increasing temperature
 and decreasing density
- → H_2 does not achieve $P_{eq}(v)$ before being dissociated

The unequilibrated P(v) results in a weaker dissociation sink for the vibrationally resolved vs unresolved Eirene results

 The decreased effective dissociation sink results in higher H₂ and lower H density

The unequilibrated P(v) results in a weaker dissociation sink for the vibrationally resolved vs unresolved Eirene results

- The decreased effective dissociation sink results in higher H₂ and lower H density
- → Fewer neutral particles available for momentum exhaust
- → Fewer atoms available for radiative exhaust (stronger radiator than H₂)

Upstream transport of vibrational states prevents vibrational equilibration, decreasing the effective dissociation rate

- However, the vibrationally resolved setup does not consider significant reactions considered by the CR model, further reducing the effective dissociation rate by 20-60%.
- Both effects contribute to a decrease in dissociation, impacting particle, momentum, and radiation balance: simultaneous evaluation is not presently possible.
- → By coupling Eirene to a CRM, such as Yacora, the full set of reactions, transport of vibrational states, and ion-electron equilibration could be evaluated simultaneously.

Outlook and acknowledgements

- Assess the validity and effect of assumptions ($T_e = T_i$, $n_{H2}^{tot} = n_{H2(\nu=0)}$, etc)
- Extend work to include isotopologues (D₂, T₂, DT)
- Investigate bundling schemes of vibrational states
- Evaluate impact of the initial vibrational distribution

The authors would like to extend a heartfelt thank you to Prof. Ursel Fantz and Prof. Detlev Reiter for valuable discussions and insight throughout the completion of this work.

Aalto University