# Magnetohydrodynamic Eigenfunction classification with a Neural Network TSV10

M. D. Kuczyński, M. Borchardt, R. Kleiber, A. Könies, C. Nührenberg

Max Planck Insitut für Plasmaphysik TI Greifswald University of Greifswald

October 27, 2021

#### Motivation

- Information on stability of fusion devices can be obtained from the energy principle of ideal MHD.
- For small-field perturbations, normal modes can be associated with a generalized eigenvalue problem, which is solved numerically (e.g. CAS3D, CKA).
- The resultant eigenmodes, f can be of different types. They are usually classified **manually** by looking at the 2D Fourier decomposed modes structure  $\varphi_{m,n}(s)$ .
- ▶ The data is summarized in the MHD spectrum plot.

## MHD spectrum

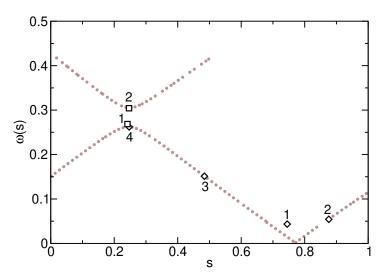



Figure: Example MHD spectrum

## Continuum and Gap modes

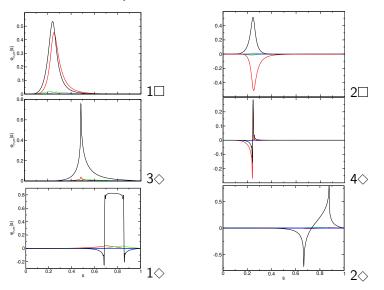



Figure: Example eigenfunctions selected from the previous spectrum.

## 2D Fourier decomposition of modes

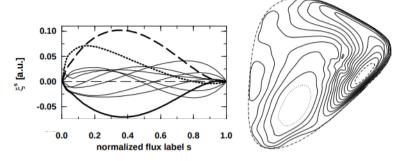



Figure: Example global fast magnetic compression mode in W7-AS.

# Eigenvalue Classification Algorithm (ECA)

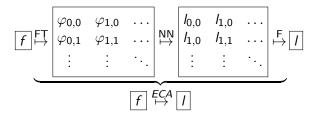
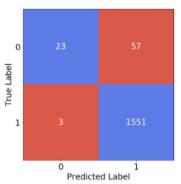




Figure: Schematic breakdown of the ECA. FT represents a 2D Fourier decomposition of the eigenfunction f. NN is the Neural Network that assigns a label  $I_{m,n}$  to each of the Fourier modes  $\varphi_{m,n}$ . F stands for the filter that infers the eigenfunction label I from various  $I_{m,n}$ .

# Advantages of the approach

$$f \overset{\mathsf{FT}}{\mapsto} \phi_{m,n} \overset{\mathsf{NN}}{\mapsto} I \qquad \qquad \mathsf{vs} \qquad \qquad f \overset{\mathsf{FT}}{\mapsto} \phi_{m,n} \overset{\mathsf{NN}}{\mapsto} I_{m,n} \overset{\mathsf{F}}{\mapsto} I$$

- Allows to generate much more data.
- Error proof.



#### Results

Automated classification of 93.6% of the data, leaving the remaining 6.4% for classification by a user defined filtering procedure.

#### Test set A

| group | count |
|-------|-------|
| 0     | 83    |
| 1     | 0     |
| 2     | 0     |
| 3     | 0     |
| 4     | 2     |

NN

| actual  |       |  |
|---------|-------|--|
| group   | count |  |
| non-gap | 83    |  |
| gap     | 3     |  |
|         |       |  |

#### Test set B

## NN \_\_\_\_

| group | count |
|-------|-------|
| 0     | 104   |
| 1     | 9     |
| 2     | 3     |
| 3     | 1     |
| 4     | 0     |

| асшаі   |       |  |
|---------|-------|--|
| group   | count |  |
| non-gap | 117   |  |
| gap     | 0     |  |
|         |       |  |

Table 2: The result of applying the ECA on the test sets.

### Possible areas of improvements

- ► Replace the 1D CNN with a NN designed for 'anomaly detection'.
- Include more types of modes, possibly unconverged and modes of mixed type.
- Enlarging the database, assuring generalizabilty.