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o The SPEC code as a tool to find equilibria with islands and chaos.

o Calculation of stellarator equilibrium !-limits.

o Stellarator optimization for magnetic surfaces at finite !.

Saturation is independent of resistivityOutline



§ SPEC was able to predict tearing mode saturation. 3

SPEC can find MHD equilibria with islands & chaos

The SPEC code finds equilibria that satisfy

in a number of volumes N, each with constant pressure,

and separated by topologically robust magnetic surfaces.
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§ The magnetic field in each volume can form islands and chaos.

§ The equations extremize the MHD energy allowing non-ideal variations.

[Hudson et al, PoP 2012]

{ p , !tor  , I"v ,   I"s }§ Required constraints in each volume: { p , !tor  , #in , #out}    or

volume and surface currents
[Baillod et al, JPP 2021]

rotational transform

[Hole et al, JPP 2006]

SPEC finds MHD equilibria with islands & chaos

[Kumar et al PPCF 2021]§ SPEC can also calculate linear stability.

[Loizu et al PoP 2020]

[Loizu et al, JPP 2017]



4

Saturation is independent of resistivitySPEC has been extended to free-boundary

Ø Free-boundary calculations recently 

achieved with SPEC.

INPUT

- BCOILS on a computational boundary

- Profile of pressure and rotational transform

- Linking currents

OUTPUT

- Equilibrium total B

- Geometry of plasma interfaces

plasma 

B . n = BCOILS + BPLASMA

vacuum

! SPEC still fragile in strongly shaped configurations.

coils

computational boundary

plasma boundary
[Hudson et al PPCF 2020]



5

Saturation is independent of resistivityNeed to explain stellarator equilibrium !-limits

[Helander et al, PPCF, 2012]

Ø The vacuum field can be designed to possess

magnetic surfaces. [Pedersen et al, Nature Comm 7, 2016]

Ø But, inevitable pressure-induced plasma currents

potentially degrade magnetic surfaces, or harmfully

modify the topology of the scrape-off-layer.

Questions

At what β magnetic surfaces start to degrade?

How does βlim depend on design parameters?

Ø This is similar to RMPs in tokamaks, except that

here the source of the perturbations is the plasma.
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Ø 1st study: classical stellarator ~ W7-A

Ø Scalable pressure profile:

Ø Toroidal current adjusts according to pressure (bootstrap):
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: “coupling constant” (reference large aspect ratio circular tokamak                  )
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!-limits studied in a classical stellarator
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ideal !-limit

PLASMA BOUNDARY

At low C, !-limit given by separatrix formation
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At high C, no ideal !-limit, but chaos can emerge

chaotic !-limit

PLASMA BOUNDARY

At high C, !-limit given by emergence of chaos 
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At high C, no ideal !-limit, but chaos can emergeWe can establish a diagram for the !-limit

~ 500 equilibria 
were computed 
with SPEC

---- anaytical
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At high C, no ideal !-limit, but chaos can emergeWe can optimize the boundary for integrability

Objective: minimize Greene‘s residue

Degrees of freedom: shape of conducting wall

Optimized

Initial 
β ~ 2 %

[Landreman et al, JOSS, 2021]

SPEC was coupled to SIMSOPT, a 
stellarator optimization framework
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At high C, no ideal !-limit, but chaos can emergeWe can optimize the coils for integrability

Objective: minimize Greene‘s residue

Degrees of freedom: external fields

Optimized

Initial 
β ~ 2 %
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At high C, no ideal !-limit, but chaos can emergeWe can optimize ECCD for integrability

Objective: minimize Greene‘s residue

Degrees of freedom: current deposition

Initial (only bootstrap) β ~ 2 %

Optimized (bootstrap + ECCD)

https://arxiv.org/abs/2111.15564

[Baillod et al, submitted to PoP]
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Summary

Ø SPEC allows fast free-boundary 3D equilibrium 

calculations with finite β and current, and with 

islands and chaos.

Ø A further advantage of SPEC is that it can

evaluate ideal and resistive MHD stability.

Ø We are using SPEC to investigate and optimize

the equilibrium β-limits in different classes of

stellarators: QA, QH, QI, …

Summary

Ø Perhaps SPEC could assist in the study of

tokamak equilibria with RMPs?


