

3D MHD equilibrium and stability with SPEC

Joaquim Loizu

in collaboration with

A. Baillod, S. Hudson, A. Kumar, Z. Qu, C. Zhu, C. Nührenberg, M. Hole, S. Lazerson, A. Cerfon, M. Landreman

FSD Science meeting - 3D effects, February 1st 2022

- The **SPEC code** as a tool to find equilibria with islands and chaos.
- Calculation of stellarator equilibrium β -limits.
- Stellarator **optimization** for magnetic surfaces at finite β .

EPFL SPEC finds MHD equilibria with islands & chaos

The SPEC code [Hudson et al, PoP 2012] finds equilibria that satisfy

$$\nabla \times \mathbf{B} = \mu_l \mathbf{B}$$
$$[[p + \frac{B^2}{2\mu_0}]] = 0$$

in a number of volumes N, each with constant pressure, and separated by topologically robust magnetic surfaces.

- The equations extremize the MHD energy allowing non-ideal variations. [Hole et al, JPP 2006]
- The magnetic field in each volume can form islands and chaos. [Loizu et al, JPP 2017]
- Required constraints in each volume: { \mathbf{p} , Ψ_{tor} , \mathbf{l}_{in} , \mathbf{l}_{out} } or { \mathbf{p} , Ψ_{tor} , $\mathbf{I}_{\phi}^{\mathbf{v}}$, $\mathbf{I}_{\phi}^{\mathbf{s}}$ } SPEC can also calculate linear stability. [Kumar et al PPCF 2021]
- SPEC can also calculate linear stability. [Kumar et al PPCF 2021]
- SPEC was able to predict tearing mode saturation. [Loizu et al PoP 2020]

volume and surface currents [Baillod et al, JPP 2021]

SPEC has been extended to free-boundary

Free-boundary calculations recently achieved with SPEC. [Hudson et al PPCF 2020]

INPUT

- **B**_{COILS} on a computational boundary
- Profile of pressure and rotational transform
- Linking currents

OUTPUT

- Equilibrium total **B**
- Geometry of plasma interfaces

SPEC still fragile in strongly shaped configurations.

- The vacuum field can be designed to possess magnetic surfaces. [Pedersen et al, Nature Comm 7, 2016]
- But, inevitable pressure-induced plasma currents potentially degrade magnetic surfaces, or harmfully modify the topology of the scrape-off-layer.
- This is similar to RMPs in tokamaks, except that here the source of the perturbations is the plasma.

Questions

At what β magnetic surfaces start to degrade?

How does β_{lim} depend on design parameters?

[Helander et al, PPCF, 2012]

β -limits studied in a classical stellarator

- ➢ 1st study: classical stellarator ∼ W7-A
- Scalable pressure profile:

$$p = p_0 \left(1 - \frac{\psi_t}{\psi_a} \right)$$

Toroidal current adjusts according to pressure (bootstrap):

$$I_{\phi}^{s} = -C \left(\frac{\Psi_{t,l}}{\Psi_{a}}\right)^{1/4} [[p]]_{l}$$

C : "coupling constant" (reference large aspect ratio circular tokamak $C_0 = \frac{R_0}{tB_0}$)

At low *C*, β -limit given by separatrix formation

$$C=5,~\langle\beta
angle=0\%$$

EPFL At high C, β -limit given by emergence of chaos

We can establish a diagram for the β -limit

We can optimize the boundary for integrability

We can optimize the coils for integrability

We can optimize ECCD for integrability

Summary

- SPEC allows fast free-boundary 3D equilibrium calculations with finite β and current, and with islands and chaos.
- We are using SPEC to investigate and optimize the equilibrium β-limits in different classes of stellarators: QA, QH, QI, ...
- A further advantage of SPEC is that it can evaluate ideal and resistive MHD stability.
- Perhaps SPEC could assist in the study of tokamak equilibria with RMPs?

