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The big picture

● Goal: To produce scientific codes that can use Tier-0 systems 

efficiently.

● GPUs are dominant at the top.

● What do we need to get there?



HPC first principles - Roofline model and memory wall

HPC means reducing Time To Solution (more science, increased accuracy, less energy used…)

Roofline model:  (if latencies are covered) TTS is proportional to the inverse of memory or arithmetic throughput  (GB/s 
or Gflops/s), which is determined by the arithmetic intensity of your algorithm (and the memory wall).

Little’s law: throughput = parallelism/latency or 1/throughput = latency/parallelism ~ TTS

Reducing TTS means exposing parallelism in scientific software



Research Codes vs. HPC codes: Scope

Scientific description

Numerical Scheme

Mapping kernels to ILP/DLP/TLP/MPI

High Perf. Data structures

Hardware architecture   
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         Scientific models

HPC

How do we make sure to reach maximum performance?



How to transition towards HPC codes

Miniapp injection 
back into the 

main codes

● Benchmarks definition and 
strategy.

● Profiling.
● Identification of bottlenecks.
● Translation into computational 

patterns.

MINIAPPS
● Improvements of specific patterns.
● Performance analysis in-depth.



Codes and bottlenecks - benchmarks strategy

● Goal: To understand the application’s behavior as a function of the resources.

● Many HPC call for resources requires representative benchmarks showing 
performance/scalability of the application. 

● Usually this activity is performed “by hand”.

● From last meeting: “It would be interesting to introduce more automation in 
the benchmarking activity”. 



Towards automatic benchmarks: Idea

Analysis

● What can be 
optimized?

Benchmark generation

● We must select 
representative test 
cases.

● A test case can be 
executed with different 
number of resources.

● Profilers can help to 
understand the 
behavior of the 
application.

Benchmark postprocessing

● Many profilers have a 
cli interface that allows 
to extract information.

● We can also parse 
timers from the 
applications.



Towards automatic benchmarks - generation

● The configurations 
represent the 
resources (threads, 
MPI)

● The configuration 
are application and 
machine 
dependent.

LOOP OVER CONFIGURATIONS

SCRIPT GENERATION 
FOR EACH 
CONFIGURATION

JOB SUBMISSION



Towards automatic benchmarks - analysis of the 
application log

● If the application has 
timers it is possible 
to extract them.

● Then, we can sort 
the timers in 
ascending order.

● And, by changing the 
resources.

Loop on configurations
Open the application log file

Parse the timers

Sort the data 



Towards automatic benchmarks - analysis of the profiler 
log

● We can also use 
profilers to get more 
information on the 
application 
bottlenecks.

Loop on configurations

Extract the profiler log

Save the data



Knowing the tool: VTUNE

● Tools like VTUNE provide a 
lot of information.

1 THREAD

2 THREADS



OVERVIEW OF THE CODES 
● GRILLIX

● GBS

● SOLEDGE3X



GRILLIX

● Current status:
○ Compilation: 

■ Dependencies: cmake, mpi, openmp, hdf5, lapack, blas, netcdf
■ Tested on Izar@EPFL and Marconi: Worked out of the box.

○ Parallelization:
■ The poloidal planes are distributed with MPI
■ Each poloidal plane is parallelized with OpenMP

● Benchmark strategy:
○ The number of poloidal planes is fixed and distributed with MPI
○ For each poloidal plane is possible to increase the number of threads
○ Goal: To study the scalability of GRILLIX by increasing the number of threads, up to 1 MPI per 

NUMA socket.



GBS
● Current status:

○ Compilation: 
■ Dependencies: cmake, mpi, openmp, hdf5, lapack, blas, petsc, hypre, AMGX
■ Successfully tested on a variety of architectures, including GPUs.

○ Solver:
■ Direct(MUMPS)      
■ Iterative(PETSc, AMGX)
■ Parallelization:

● MPI in the poloidal plane

○ RHS computation:
■ Stencil operations - memory bounded
■ Parallelization: MPI across the domain

● Benchmark strategy:
○ We usually increase the number of MPI task on the toroidal direction and fix the number of 

MPI tasks in the poloidal plane



TCV on SuperMUC-NG 

SuperMUC-NG hardware
● 6480 Intel Skylake Xeon Platinum 8174
● 96GB DDR4 memory
● Network: Intel Omni-Path

Setup: TCV at 0.9T, 100 timestep
● Turbulent mode
● Nx = 300, ny = 600, nz = 128 
● Solver: deflated GMRES
● Preconditioner: Hypre/BoomerAMG

x-y-z processor partition

2 node: 6x8x2 cores 32 nodes: 6x8x32 cores
4 nodes: 6x8x4 cores 64 nodes: 6x8x64 cores          
8 nodes: 6x9x8 cores 128 nodes: 6x16x64 cores
16 nodes: 6x8x16 cores 256 nodes: 12x16x64 cores 

 

 

Nodes
Time to 
solution Speedup Grad comp Ampere Poisson

2 1187.72 1.00 361.39 562.66 262.3
4 584.54 2.03 163.46 286.49 133.53
8 285.58 4.16 72.79 144.02 67.32

16 149.45 7.95 36.64 75.67 35.05
32 79.17 15.00 21.88 37.98 17.74
64 44.96 26.42 14.9 19.42 9.29

128 35.95 33.04 8.19 19.05 7.78
256 39.01 30.45 5.37 25.98 6.84

AT 64 NODES IT TAKES 0.45s/STEP TO SOLVE FULL TCV → ~6M CORE HOURS FOR THE FULL SIMULATION



JT60-SA on SuperMUC-NG

SuperMUC-NG hardware
● 6480 Intel Skylake Xeon Platinum 8174
● 96GB DDR4 memory
● Network: Intel Omni-Path

Setup: JT60-SA, 100 timestep
● Turbulent mode
● Nx = 1200, ny = 2000, nz = 300 
● Solver: deflated GMRES
● Preconditioner: Hypre/BoomerAMG

Nodes System Time to solution Plasma Ampere Poisson
64 TCV 44.96 14.9 19.42 9.29
75 JT60-SA 909.93 501.19 196.78 199.6

9(s/step)*10M(steps)*75(nodes)*48(cores/node) ~ 
90M core/hours



● Current status:
○ Soledge3X relies on a mix explicit-implicit scheme
○ It uses MPI+OpenMP
○ it uses Petsc, Pastix, Hypre for implicit solvers

● Goals:
○ profiling Soledge3X on SCITAS and Marconi clusters
○ implement performance metrics to understand main bottlenecks
○ use miniapp to investigate main bottlenecks and analyse performance in depth
○ optimize and porting to GPU some parts of the code

Soledge3X profiling 



Time-stepping scheme in Soledge3X 

● Main loop algorithm regarding main CPU time-consuming routines 

evolveExplicit evolveImplicitMomentum
2D (parallel direction)

evolveImplicitEnergy
2D (parallel direction)

evolveImplicitElectricPotential
3D



Parallelization in Soledge3X 

● Spatial discretization:
○ structured grid in the (𝜓,𝜃,𝜑) coordinate system aligned with magnetic flux 

surfaces (𝜓 associated with the magnetic flux)
○ the solvers evolveImplicitMomentum and evolveImplicitEnergy are built 

using 2D stencils located in magnetic flux surface:
→ independent linear 2D mesh-based solvers are called for each value of 𝜓 
(magnetic flux surface)

○ however, the solver evolveImplicitElectricPotential is 3D mesh-based

● PETSC, PASTIX and HYPRE can be used for implicit solvers

● The domain is decomposed in zones for X-point geometries (see figure)

● MPI domain decomposition according to the (𝜓,𝜃,𝜑) structured grid: the domain is 
in priority decomposed along the 𝜓 direction (according to the magnetic flux 
surface workload), then along the 𝜃 direction

● MPI communicator for each magnetic flux surface (each value of 𝜓), useful for 2D 
mesh-based solvers

● OpenMP is used for each MPI process, except in PETSC and HYPRE solvers



Profiling setup
● Setup: Helvetios@SCITAS cluster

● 2 Skylake processors running at 2.3 GHz, with 18 cores each
● 192 GB of DDR3 RAM
● Intel compiler 

● Test case : circle 3D 
○ Npsi = 50, Ntheta = 500, Nphi = 50 
○ Petsc for all implicit solvers

- BiCGStab (Stabilized BiConjugate Gradient)
- AMG preconditioner

○ Presence of wall



Profiling Soledge3X

                     routines
#MPI process

ComputeExpl ComputeImpl ComputeImpl-
ElectricPotential

ComputeImpl-E
nergy

ComputeImpl-
Momentum

1 16% 80% 35% 25% 19%

18 16% 74% 34% 23% 18%

36 16% 74% 34% 23% 18%

72 16% 68% 35% 19% 14%

144 15% 67% 37% 19% 14%

288 13% 70% 38% 18% 12%

● Main loop distribution for pure MPI parallelism



Soledge3X profiling 
● Strong scaling: more efficient when the number of MPI processes 

divides the number of magnetic flux surfaces



Soledge3X profiling 
● Strong scaling



Soledge3X profiling 
● Weak scaling



Profiling with Scorep
● Main loop: Scorep analysis for 144 MPI processes

● Communication efficiency (maximum across all processes of the ratio between useful 
computation time and total run-time): 

CommE = maximum across processes (ComputationTime / TotalRuntime) = 0.94

● Load balance efficiency (ratio between average useful computation time - across all processes - 
and maximum useful computation time - also across all processes - :

LB=avg(ComputationTime) / max(ComputationTime) = 0.71



Profiling with Scorep
● evolveImplicitPHI routine: MPI 

barrier take most of the time



Miniapps for linear solvers

● use of Miniapp (see Nicola’s talk on solvers):

● New routine in Soledge3X for dumping matrices in PETSC format for all implicit solvers

● The Miniapp loads matrices and solves linear system with PETSC and AMGX (see Nicola’s talk 
on solvers)

● AMGX - First tests:
○ the miniapp allows the comparison between Petsc and Amgx 
○ AMGX converges for matrices corresponding to 2D implicit solvers ; for matrix 

corresponding to the 3D Electric potential implicit solver AMGX converges only for coarse 
mesh
--> need to investigate further AMGX parameters 

● HYPRE - First tests: HYPRE with OpenMP installed on Scitas cluster. Use of miniapp to test the 
pinning of threads to cores. Need of OpenMP nested regions to couple OpenMP threads in 
Soledge3X and HYPRE threads. 



First conclusions on Soledge3X profiling

● Conclusions
○ Profiling shows most of the computation time is spent within the implicit solvers
○ MPI parallel efficiency depends on the ratio of the number of MPI processes and the 

number of magnetic flux surfaces
○ OpenMP is quite efficient except for linear solvers (PETSC doesn’t use threads !)

● Perspectives
○ Miniapp can help to test different linear solvers
○ Look at linear solvers using threads (Hypre ?)
○ Look at the MPI decomposition (depending in particular on the heterogeneous workload 

between magnetic flux surfaces and the presence of penalization mask to take into 
account walls)

○ Port to GPU some parts of the code
○ Overlap CPU/GPU computation
○ Intra-node optimization (OpenMP, vectorization)



intra-node profiling
● Intel-Vtune



Miniapps

● Definition: Standalone applications aimed to study specific problems.
● Usually we take the subroutines from the main codes and we turn them into 

standalone application.
● We need to:

○ Save the necessary data from the main codes, e.g. HDF5, NETCDF.
○ Isolate the subroutine and its dependencies(modules, libraries).
○ Create the Makefile or CMAKE.

● Advantages:
○ Easier to develop than the main codes.
○ Ideal for testing.
○ It’s doable to perform tracing.
○ Facilitate the interaction with vendors.

● Disadvantages:
○ The modification have to be injected back to the main applications.
○ The miniapp and the main application have to be maintained separately.



Miniapps relevant to the community

● Elliptic solver.
● Stencil computation.



Elliptic Solver

● The solver/preconditioner used for the Poisson equation is one of the most 
critical bottleneck.

● Most of the solvers involved in this project are performed in the poloidal 2D 
plane, with the exception of the electric potential in Soledge3X.

● What are the main solver’s components?
○ Matrix building.
○ RHS building.
○ Matrix solve.

● What miniapps:
○ Solver test: just perform Ax=b. A,b inputs.

■ Purpose: To compare different methods to solve the linear system.
○ Solver + matrix build: build the matrix and solver the system.

■ Purpose: To mimic what is done in the main codes.



Solver test

● For this miniapp we read from file the matrix and rhs.
● PETSc support for now

MAT READ

RHS READ

SOLVE

PETSCRC

The MatSetFromOptions, 
VecSetFromOptions, 
KSPSetFromOptions allow 
a great degree of flexibility

The user specify a petscrc 
file



Solver test miniapp - Grillix testcase

● Data in CSR.
● Input: matrix and 

rhs.
● Information 

extraction fron 
netcdf.

● Integration with 
PETSc in Python.

● Fast prototyping.



Solver test - parameter scan

● 1) Explore the configurations by generate the 
possible permutations solver/preconditioner 
specified in the hyperparameters.json

● 2) Loop over the configurations, generate the 
slurm script and submit to the queue.

hyperparameters.json

1

2



Solvers/Preconditioner scan

We did a scan of the possible permutations of solver/preconditioner in order to find the best performance for 1 poloidal plane

Setup: Reduced TCV at 0.9T
● Turbulent mode
● Nx = 300, ny = 600
● 1 node of TAVE, KNL
● 64 cores AVX512

● Hypre preconditioner gives the best TTS 
across many solvers

● 1655 configuration tested
 

● Algebraic multigrid works well for these 
kind of solvers

● The permutations of the 
hypre/BoomerAMGX preconditioner 
parameters would require ~2M jobs

● We froze one parameter at a time for the 
most significant parameters in order to find 
the optimal configuration



Solver test - discussion

● The PETSc implementation works well but matrix and vectors have to be in 
the PETSc format.

● It is possible to build the matrix from other formats, e.g. CSR.
● Which format shall we use?



Matrix building and solver miniapp

● Goal: to optimize the time-to-solution of matrix building plus solver.

● Building the matrix can be an expensive operation. However, it can be 
optimized in many cases.

● Usually the matrix is built from stencil operations, typically memory bounded.

● Test case: GBS



The solver in GBS

● The matrix building:
○ In GBS the poloidal plane has rectangular geometry and size (Nx, Ny).
○ For each point a 9 point stencil is computed, which then populate the matrix used by the 

solver.
○ Depending upon the solver used the matrix is built in different ways.

● The solver:
○ Direct - MUMPS
○ Iterative CPU - PETSC
○ Iterative GPU - AMGX



Matrix Assembly - PETSc CPU

● We started from the 
automated matrix API 
available in PETSc

● Advantadges:
○ Automatic management 

of the local/global 
mapping.

○ To fill the matrix  the user 
specify the local entries.

● Disadvantages:
○ Lack of control.



Test case: JT60-SA from turbulent restart

● Setup:
○ System size: Nx=1200 Ny=2000 Nz=8
○ Machine: single socket skylake with 20 cores plus V100
○ Solver: DGMRES   Preconditioner: Hypre/BoomerAMG
○ 1 GBS step

● Goal: compare the performance of AMGX(GPU) vs PETSc(CPU)
● The AMGX options can be further tuned. 
● It would be possible to use AmgXWrapper but it would not improve the matrix building.

PETSC/AMGX #MPI tasks Matrix building(s) Solve(s)

PETSC 20(CPU) 3.35 38.4

AMGX - native API 1(GPU) 0.13 21.2

KEY POINT: TO ACHIEVE MAXIMUM PERFORMANCES IS NECESSARY TO LOOK AT ALL THE 
ASPECTS



From DMDA to CSR

● AMGX uses the CSR format.
● PETSc has many options for debugging: -matview

● This tool helped to understand how to create the local/global mapping in CSR.
● To port the matrix building on GPU with CUDA we had to:

○ Create the matrix with AMGX.
○ Populate the matrix with CUDA kernel.

● ~20X faster wrt to CPU. Perhaps there is room for optimization in the CPU version.
 



Conclusion and perspective

● Lesson 1: automatism comes at a price, performance.
● Lesson 2: It is necessary to choose your evil.

○ Usually, libraries and compilers support C/C++ first.
■ Sometimes there is a native fortran binding (PETSc).
■ In other cases it has to be created (AMGX).

○ In principle the matrix building could have been done with CUDA Fortran, OpenACC or 
OpenMP. However, only GNU C/C++ is capable to compile AMGX.

○ The hardest part of the matrix building porting was the compatibility C/Fortran.
○ However, this part can be embedded into a library, so the application developers don’t need to 

deal with C.
● The performance boost obtained in the matrix building is well promising for 

the RHS operations.



RHS computation



OpenMP Offload in GBS-RHS
● Goal: use GPUs in plasma evolution already used in Poisson/Ampere 

solver

● Use of OpenMP offload for Plasma subroutines



OpenMP Offload for GPU

● CUDA only for NVIDIA GPU

● OpenMP offload for NVIDIA and AMD GPUs
○ Standardized, available for C, C++, and Fortran
○ Directive based multithreading library
○ Portable and ease of use, very good support (GNU, ARM, Intel, IBM, PGI, etc)
○ Less efficient than CUDA, high dependency on compilers 
○ Performance of the classical stencil-based Jacobi example on SCITAS cluster:

Xeon-Gold processors with 20 cores
NVIDIA V100 GPUs (7TFLOPS)
  



OpenMP Offload in GBS-RHS 
● Example of 

OpenMP offloading 
in GBS:



OpenMP Offload in GBS-RHS

● Example of OpenMP 
offloading in GBS:



OpenMP Offload in GBS-RHS for GPU

● We compared initial CPU serial implementation vs OpenMP one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1000, nz = 4 
● 1 node piz-daint@CSCS

○ 12-core Intel Xeon 64GB RAM
○ 1 NVIDIA Tesla P100 16GB 

● Cray Compiling Environment

Subroutine CPU serial Time(s) OpenMP offload 
Time(s)

OpenMP offload 
Speedup 

Global RHS module 20.8 5. 4.2

parallel gradients 11.28 1.28 9.

diffusion operators 0.5 0.25 2

interpolation 0.72 0.41 1.75



OpenMP Offload in GBS-RHS for GPU

● We compared initial CPU serial implementation vs OpenMP one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 1200, ny = 2000, nz = 4 
● 1 node piz-daint@CSCS

○ 12-core Intel Xeon 64GB RAM
○ 1 NVIDIA Tesla P100 16GB 

● Cray Compiling Environment

Subroutine CPU serial Time(s) OpenMP offload 
Time(s)

OpenMP offload 
Speedup 

Global RHS module 80 16 5

parallel gradients 48 3.1 15

diffusion operators 1.7 0.8 2.1

interpolation 3 1.5 2



OpenMP offload in GBS 

● Ongoing work: 

○ asynchronous operations between CPU and GPU, identify kernels to be 
ported on GPU, overlap data transfer

○ To get more performance, test IBM xl compiler on MARCONI-100

○  Test new GCC 11.2 (2021-07-28) fully supporting OpenMP offload: 
“For Fortran, OpenMP 4.5 is now fully supported and OpenMP 5.0 support 
has been extended, including the following features which were before only 
available in C and C++”

○ optimize CPU/GPU data transfer

https://gcc.gnu.org/pipermail/gcc/2021-July/236903.html


OpenMP in GBS for CPU
● Each GPU is usually associated to a single MPI process 

● How to exploit remaining cores :
○ associate a single core to a single MPI process (usually requiring collective 

MPI communications to transfer data to GPU)
○ use OpenMP to exploit remaining cores
○ use OpenMP from OpenMP-offload development is straightforward 

(compilation option)



OpenMP in GBS-RHS for CPU
● We compared initial CPU serial implementation, pure OpenMP one and pure MPI one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1200, nz = 4 
● 1 node izar

○ Xeon-Gold processors running at 2.1 GHz, with 20 cores each
○ Intel compiler



OpenACC in GBS-RHS for GPU

● Goal: adapt the work done with OpenMP offload to use OpenACC:
--> “replace” OpenMP directives by OpenACC directives for loop and data transfer:

○ first, using unified memory with OpenACC compiling with -acc -ta=tesla:managed

○ then optimize data transfer following current openmp offload data transfer  



OpenACC in GBS

● Piz daint with PGI compiler
● bandwidth (Saxpy openacc test) = 474 GB/s
● theoritical peak 4,7 TFlops
● kernel compute bound if AI>9
● Kernels in RHS are memory bound

○ kernel1: AI = 7/24 --> Memory bound 
○ kernel2: AI = 31/24 --> Memory bound 

kernel1

kernel2



OpenACC in GBS-RHS for GPU
● We compared initial CPU serial implementation vs OpenACC one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1200, nz = 4 
● 1 node piz-daint@CSCS

○ 1 NVIDIA Tesla P100 16GB 
● PGI Compiling Environment

Subroutine CPU serial 
(one core)

OpenACC (managed 
option)

OpenACC (data transfer 
optimized)

time(s) time (s) speed up time (s) speed up

Global RHS module 42.6 24 x1.75 10.6 x4

parallel gradients 30 10.5 x2.9 0.56 x53

diffusion operators 0.5 0.5 x1 0.25 x2

interpolation 0.92 1 x0.85 0.77 x1.2

transfer HtoD/DtoH 
+ Gpu page fault

15 4.8



OpenACC in GBS-RHS for GPU

● Conclusion:
○ Compared to cpu (one core) version, we observed a speed up x2 for the Unified Memory 

OpenACC version and a speed up x4 for the OpenACC version managing data transfer 
○ Memory peak usage: 10GB

● In progress:
○ optimize data transfer 
○ use multiple GPU 
○ Test new GNU 11.2 compiler supporting OpenACC 



OpenACC in GBS-RHS for GPU
● Nsys profiling

○ Multiple streams version using async/wait directives


