
TSVV - ACH meeting

The big picture

● Goal: To produce scientific codes that can use Tier-0 systems

efficiently.

● GPUs are dominant at the top.

● What do we need to get there?

HPC first principles - Roofline model and memory wall

HPC means reducing Time To Solution (more science, increased accuracy, less energy used…)

Roofline model: (if latencies are covered) TTS is proportional to the inverse of memory or arithmetic throughput (GB/s
or Gflops/s), which is determined by the arithmetic intensity of your algorithm (and the memory wall).

Little’s law: throughput = parallelism/latency or 1/throughput = latency/parallelism ~ TTS

Reducing TTS means exposing parallelism in scientific software

Research Codes vs. HPC codes: Scope

Scientific description

Numerical Scheme

Mapping kernels to ILP/DLP/TLP/MPI

High Perf. Data structures

Hardware architecture

 P
er

fo
rm

an
ce

 Scientific models

HPC

How do we make sure to reach maximum performance?

How to transition towards HPC codes

Miniapp injection
back into the

main codes

● Benchmarks definition and
strategy.

● Profiling.
● Identification of bottlenecks.
● Translation into computational

patterns.

MINIAPPS
● Improvements of specific patterns.
● Performance analysis in-depth.

Codes and bottlenecks - benchmarks strategy

● Goal: To understand the application’s behavior as a function of the resources.

● Many HPC call for resources requires representative benchmarks showing
performance/scalability of the application.

● Usually this activity is performed “by hand”.

● From last meeting: “It would be interesting to introduce more automation in
the benchmarking activity”.

Towards automatic benchmarks: Idea

Analysis

● What can be
optimized?

Benchmark generation

● We must select
representative test
cases.

● A test case can be
executed with different
number of resources.

● Profilers can help to
understand the
behavior of the
application.

Benchmark postprocessing

● Many profilers have a
cli interface that allows
to extract information.

● We can also parse
timers from the
applications.

Towards automatic benchmarks - generation

● The configurations
represent the
resources (threads,
MPI)

● The configuration
are application and
machine
dependent.

LOOP OVER CONFIGURATIONS

SCRIPT GENERATION
FOR EACH
CONFIGURATION

JOB SUBMISSION

Towards automatic benchmarks - analysis of the
application log

● If the application has
timers it is possible
to extract them.

● Then, we can sort
the timers in
ascending order.

● And, by changing the
resources.

Loop on configurations
Open the application log file

Parse the timers

Sort the data

Towards automatic benchmarks - analysis of the profiler
log

● We can also use
profilers to get more
information on the
application
bottlenecks.

Loop on configurations

Extract the profiler log

Save the data

Knowing the tool: VTUNE

● Tools like VTUNE provide a
lot of information.

1 THREAD

2 THREADS

OVERVIEW OF THE CODES
● GRILLIX

● GBS

● SOLEDGE3X

GRILLIX

● Current status:
○ Compilation:

■ Dependencies: cmake, mpi, openmp, hdf5, lapack, blas, netcdf
■ Tested on Izar@EPFL and Marconi: Worked out of the box.

○ Parallelization:
■ The poloidal planes are distributed with MPI
■ Each poloidal plane is parallelized with OpenMP

● Benchmark strategy:
○ The number of poloidal planes is fixed and distributed with MPI
○ For each poloidal plane is possible to increase the number of threads
○ Goal: To study the scalability of GRILLIX by increasing the number of threads, up to 1 MPI per

NUMA socket.

GBS
● Current status:

○ Compilation:
■ Dependencies: cmake, mpi, openmp, hdf5, lapack, blas, petsc, hypre, AMGX
■ Successfully tested on a variety of architectures, including GPUs.

○ Solver:
■ Direct(MUMPS)
■ Iterative(PETSc, AMGX)
■ Parallelization:

● MPI in the poloidal plane

○ RHS computation:
■ Stencil operations - memory bounded
■ Parallelization: MPI across the domain

● Benchmark strategy:
○ We usually increase the number of MPI task on the toroidal direction and fix the number of

MPI tasks in the poloidal plane

TCV on SuperMUC-NG

SuperMUC-NG hardware
● 6480 Intel Skylake Xeon Platinum 8174
● 96GB DDR4 memory
● Network: Intel Omni-Path

Setup: TCV at 0.9T, 100 timestep
● Turbulent mode
● Nx = 300, ny = 600, nz = 128
● Solver: deflated GMRES
● Preconditioner: Hypre/BoomerAMG

x-y-z processor partition

2 node: 6x8x2 cores 32 nodes: 6x8x32 cores
4 nodes: 6x8x4 cores 64 nodes: 6x8x64 cores
8 nodes: 6x9x8 cores 128 nodes: 6x16x64 cores
16 nodes: 6x8x16 cores 256 nodes: 12x16x64 cores

Nodes
Time to
solution Speedup Grad comp Ampere Poisson

2 1187.72 1.00 361.39 562.66 262.3
4 584.54 2.03 163.46 286.49 133.53
8 285.58 4.16 72.79 144.02 67.32

16 149.45 7.95 36.64 75.67 35.05
32 79.17 15.00 21.88 37.98 17.74
64 44.96 26.42 14.9 19.42 9.29

128 35.95 33.04 8.19 19.05 7.78
256 39.01 30.45 5.37 25.98 6.84

AT 64 NODES IT TAKES 0.45s/STEP TO SOLVE FULL TCV → ~6M CORE HOURS FOR THE FULL SIMULATION

JT60-SA on SuperMUC-NG

SuperMUC-NG hardware
● 6480 Intel Skylake Xeon Platinum 8174
● 96GB DDR4 memory
● Network: Intel Omni-Path

Setup: JT60-SA, 100 timestep
● Turbulent mode
● Nx = 1200, ny = 2000, nz = 300
● Solver: deflated GMRES
● Preconditioner: Hypre/BoomerAMG

Nodes System Time to solution Plasma Ampere Poisson
64 TCV 44.96 14.9 19.42 9.29
75 JT60-SA 909.93 501.19 196.78 199.6

9(s/step)*10M(steps)*75(nodes)*48(cores/node) ~
90M core/hours

● Current status:
○ Soledge3X relies on a mix explicit-implicit scheme
○ It uses MPI+OpenMP
○ it uses Petsc, Pastix, Hypre for implicit solvers

● Goals:
○ profiling Soledge3X on SCITAS and Marconi clusters
○ implement performance metrics to understand main bottlenecks
○ use miniapp to investigate main bottlenecks and analyse performance in depth
○ optimize and porting to GPU some parts of the code

Soledge3X profiling

Time-stepping scheme in Soledge3X

● Main loop algorithm regarding main CPU time-consuming routines

evolveExplicit evolveImplicitMomentum
2D (parallel direction)

evolveImplicitEnergy
2D (parallel direction)

evolveImplicitElectricPotential
3D

Parallelization in Soledge3X

● Spatial discretization:
○ structured grid in the (𝜓,𝜃,𝜑) coordinate system aligned with magnetic flux

surfaces (𝜓 associated with the magnetic flux)
○ the solvers evolveImplicitMomentum and evolveImplicitEnergy are built

using 2D stencils located in magnetic flux surface:
→ independent linear 2D mesh-based solvers are called for each value of 𝜓
(magnetic flux surface)

○ however, the solver evolveImplicitElectricPotential is 3D mesh-based

● PETSC, PASTIX and HYPRE can be used for implicit solvers

● The domain is decomposed in zones for X-point geometries (see figure)

● MPI domain decomposition according to the (𝜓,𝜃,𝜑) structured grid: the domain is
in priority decomposed along the 𝜓 direction (according to the magnetic flux
surface workload), then along the 𝜃 direction

● MPI communicator for each magnetic flux surface (each value of 𝜓), useful for 2D
mesh-based solvers

● OpenMP is used for each MPI process, except in PETSC and HYPRE solvers

Profiling setup
● Setup: Helvetios@SCITAS cluster

● 2 Skylake processors running at 2.3 GHz, with 18 cores each
● 192 GB of DDR3 RAM
● Intel compiler

● Test case : circle 3D
○ Npsi = 50, Ntheta = 500, Nphi = 50
○ Petsc for all implicit solvers

- BiCGStab (Stabilized BiConjugate Gradient)
- AMG preconditioner

○ Presence of wall

Profiling Soledge3X

 routines
#MPI process

ComputeExpl ComputeImpl ComputeImpl-
ElectricPotential

ComputeImpl-E
nergy

ComputeImpl-
Momentum

1 16% 80% 35% 25% 19%

18 16% 74% 34% 23% 18%

36 16% 74% 34% 23% 18%

72 16% 68% 35% 19% 14%

144 15% 67% 37% 19% 14%

288 13% 70% 38% 18% 12%

● Main loop distribution for pure MPI parallelism

Soledge3X profiling
● Strong scaling: more efficient when the number of MPI processes

divides the number of magnetic flux surfaces

Soledge3X profiling
● Strong scaling

Soledge3X profiling
● Weak scaling

Profiling with Scorep
● Main loop: Scorep analysis for 144 MPI processes

● Communication efficiency (maximum across all processes of the ratio between useful
computation time and total run-time):

CommE = maximum across processes (ComputationTime / TotalRuntime) = 0.94

● Load balance efficiency (ratio between average useful computation time - across all processes -
and maximum useful computation time - also across all processes - :

LB=avg(ComputationTime) / max(ComputationTime) = 0.71

Profiling with Scorep
● evolveImplicitPHI routine: MPI

barrier take most of the time

Miniapps for linear solvers

● use of Miniapp (see Nicola’s talk on solvers):

● New routine in Soledge3X for dumping matrices in PETSC format for all implicit solvers

● The Miniapp loads matrices and solves linear system with PETSC and AMGX (see Nicola’s talk
on solvers)

● AMGX - First tests:
○ the miniapp allows the comparison between Petsc and Amgx
○ AMGX converges for matrices corresponding to 2D implicit solvers ; for matrix

corresponding to the 3D Electric potential implicit solver AMGX converges only for coarse
mesh
--> need to investigate further AMGX parameters

● HYPRE - First tests: HYPRE with OpenMP installed on Scitas cluster. Use of miniapp to test the
pinning of threads to cores. Need of OpenMP nested regions to couple OpenMP threads in
Soledge3X and HYPRE threads.

First conclusions on Soledge3X profiling

● Conclusions
○ Profiling shows most of the computation time is spent within the implicit solvers
○ MPI parallel efficiency depends on the ratio of the number of MPI processes and the

number of magnetic flux surfaces
○ OpenMP is quite efficient except for linear solvers (PETSC doesn’t use threads !)

● Perspectives
○ Miniapp can help to test different linear solvers
○ Look at linear solvers using threads (Hypre ?)
○ Look at the MPI decomposition (depending in particular on the heterogeneous workload

between magnetic flux surfaces and the presence of penalization mask to take into
account walls)

○ Port to GPU some parts of the code
○ Overlap CPU/GPU computation
○ Intra-node optimization (OpenMP, vectorization)

intra-node profiling
● Intel-Vtune

Miniapps

● Definition: Standalone applications aimed to study specific problems.
● Usually we take the subroutines from the main codes and we turn them into

standalone application.
● We need to:

○ Save the necessary data from the main codes, e.g. HDF5, NETCDF.
○ Isolate the subroutine and its dependencies(modules, libraries).
○ Create the Makefile or CMAKE.

● Advantages:
○ Easier to develop than the main codes.
○ Ideal for testing.
○ It’s doable to perform tracing.
○ Facilitate the interaction with vendors.

● Disadvantages:
○ The modification have to be injected back to the main applications.
○ The miniapp and the main application have to be maintained separately.

Miniapps relevant to the community

● Elliptic solver.
● Stencil computation.

Elliptic Solver

● The solver/preconditioner used for the Poisson equation is one of the most
critical bottleneck.

● Most of the solvers involved in this project are performed in the poloidal 2D
plane, with the exception of the electric potential in Soledge3X.

● What are the main solver’s components?
○ Matrix building.
○ RHS building.
○ Matrix solve.

● What miniapps:
○ Solver test: just perform Ax=b. A,b inputs.

■ Purpose: To compare different methods to solve the linear system.
○ Solver + matrix build: build the matrix and solver the system.

■ Purpose: To mimic what is done in the main codes.

Solver test

● For this miniapp we read from file the matrix and rhs.
● PETSc support for now

MAT READ

RHS READ

SOLVE

PETSCRC

The MatSetFromOptions,
VecSetFromOptions,
KSPSetFromOptions allow
a great degree of flexibility

The user specify a petscrc
file

Solver test miniapp - Grillix testcase

● Data in CSR.
● Input: matrix and

rhs.
● Information

extraction fron
netcdf.

● Integration with
PETSc in Python.

● Fast prototyping.

Solver test - parameter scan

● 1) Explore the configurations by generate the
possible permutations solver/preconditioner
specified in the hyperparameters.json

● 2) Loop over the configurations, generate the
slurm script and submit to the queue.

hyperparameters.json

1

2

Solvers/Preconditioner scan

We did a scan of the possible permutations of solver/preconditioner in order to find the best performance for 1 poloidal plane

Setup: Reduced TCV at 0.9T
● Turbulent mode
● Nx = 300, ny = 600
● 1 node of TAVE, KNL
● 64 cores AVX512

● Hypre preconditioner gives the best TTS
across many solvers

● 1655 configuration tested

● Algebraic multigrid works well for these
kind of solvers

● The permutations of the
hypre/BoomerAMGX preconditioner
parameters would require ~2M jobs

● We froze one parameter at a time for the
most significant parameters in order to find
the optimal configuration

Solver test - discussion

● The PETSc implementation works well but matrix and vectors have to be in
the PETSc format.

● It is possible to build the matrix from other formats, e.g. CSR.
● Which format shall we use?

Matrix building and solver miniapp

● Goal: to optimize the time-to-solution of matrix building plus solver.

● Building the matrix can be an expensive operation. However, it can be
optimized in many cases.

● Usually the matrix is built from stencil operations, typically memory bounded.

● Test case: GBS

The solver in GBS

● The matrix building:
○ In GBS the poloidal plane has rectangular geometry and size (Nx, Ny).
○ For each point a 9 point stencil is computed, which then populate the matrix used by the

solver.
○ Depending upon the solver used the matrix is built in different ways.

● The solver:
○ Direct - MUMPS
○ Iterative CPU - PETSC
○ Iterative GPU - AMGX

Matrix Assembly - PETSc CPU

● We started from the
automated matrix API
available in PETSc

● Advantadges:
○ Automatic management

of the local/global
mapping.

○ To fill the matrix the user
specify the local entries.

● Disadvantages:
○ Lack of control.

Test case: JT60-SA from turbulent restart

● Setup:
○ System size: Nx=1200 Ny=2000 Nz=8
○ Machine: single socket skylake with 20 cores plus V100
○ Solver: DGMRES Preconditioner: Hypre/BoomerAMG
○ 1 GBS step

● Goal: compare the performance of AMGX(GPU) vs PETSc(CPU)
● The AMGX options can be further tuned.
● It would be possible to use AmgXWrapper but it would not improve the matrix building.

PETSC/AMGX #MPI tasks Matrix building(s) Solve(s)

PETSC 20(CPU) 3.35 38.4

AMGX - native API 1(GPU) 0.13 21.2

KEY POINT: TO ACHIEVE MAXIMUM PERFORMANCES IS NECESSARY TO LOOK AT ALL THE
ASPECTS

From DMDA to CSR

● AMGX uses the CSR format.
● PETSc has many options for debugging: -matview

● This tool helped to understand how to create the local/global mapping in CSR.
● To port the matrix building on GPU with CUDA we had to:

○ Create the matrix with AMGX.
○ Populate the matrix with CUDA kernel.

● ~20X faster wrt to CPU. Perhaps there is room for optimization in the CPU version.

Conclusion and perspective

● Lesson 1: automatism comes at a price, performance.
● Lesson 2: It is necessary to choose your evil.

○ Usually, libraries and compilers support C/C++ first.
■ Sometimes there is a native fortran binding (PETSc).
■ In other cases it has to be created (AMGX).

○ In principle the matrix building could have been done with CUDA Fortran, OpenACC or
OpenMP. However, only GNU C/C++ is capable to compile AMGX.

○ The hardest part of the matrix building porting was the compatibility C/Fortran.
○ However, this part can be embedded into a library, so the application developers don’t need to

deal with C.
● The performance boost obtained in the matrix building is well promising for

the RHS operations.

RHS computation

OpenMP Offload in GBS-RHS
● Goal: use GPUs in plasma evolution already used in Poisson/Ampere

solver

● Use of OpenMP offload for Plasma subroutines

OpenMP Offload for GPU

● CUDA only for NVIDIA GPU

● OpenMP offload for NVIDIA and AMD GPUs
○ Standardized, available for C, C++, and Fortran
○ Directive based multithreading library
○ Portable and ease of use, very good support (GNU, ARM, Intel, IBM, PGI, etc)
○ Less efficient than CUDA, high dependency on compilers
○ Performance of the classical stencil-based Jacobi example on SCITAS cluster:

Xeon-Gold processors with 20 cores
NVIDIA V100 GPUs (7TFLOPS)

OpenMP Offload in GBS-RHS
● Example of

OpenMP offloading
in GBS:

OpenMP Offload in GBS-RHS

● Example of OpenMP
offloading in GBS:

OpenMP Offload in GBS-RHS for GPU

● We compared initial CPU serial implementation vs OpenMP one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1000, nz = 4
● 1 node piz-daint@CSCS

○ 12-core Intel Xeon 64GB RAM
○ 1 NVIDIA Tesla P100 16GB

● Cray Compiling Environment

Subroutine CPU serial Time(s) OpenMP offload
Time(s)

OpenMP offload
Speedup

Global RHS module 20.8 5. 4.2

parallel gradients 11.28 1.28 9.

diffusion operators 0.5 0.25 2

interpolation 0.72 0.41 1.75

OpenMP Offload in GBS-RHS for GPU

● We compared initial CPU serial implementation vs OpenMP one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 1200, ny = 2000, nz = 4
● 1 node piz-daint@CSCS

○ 12-core Intel Xeon 64GB RAM
○ 1 NVIDIA Tesla P100 16GB

● Cray Compiling Environment

Subroutine CPU serial Time(s) OpenMP offload
Time(s)

OpenMP offload
Speedup

Global RHS module 80 16 5

parallel gradients 48 3.1 15

diffusion operators 1.7 0.8 2.1

interpolation 3 1.5 2

OpenMP offload in GBS

● Ongoing work:

○ asynchronous operations between CPU and GPU, identify kernels to be
ported on GPU, overlap data transfer

○ To get more performance, test IBM xl compiler on MARCONI-100

○ Test new GCC 11.2 (2021-07-28) fully supporting OpenMP offload:
“For Fortran, OpenMP 4.5 is now fully supported and OpenMP 5.0 support
has been extended, including the following features which were before only
available in C and C++”

○ optimize CPU/GPU data transfer

https://gcc.gnu.org/pipermail/gcc/2021-July/236903.html

OpenMP in GBS for CPU
● Each GPU is usually associated to a single MPI process

● How to exploit remaining cores :
○ associate a single core to a single MPI process (usually requiring collective

MPI communications to transfer data to GPU)
○ use OpenMP to exploit remaining cores
○ use OpenMP from OpenMP-offload development is straightforward

(compilation option)

OpenMP in GBS-RHS for CPU
● We compared initial CPU serial implementation, pure OpenMP one and pure MPI one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1200, nz = 4
● 1 node izar

○ Xeon-Gold processors running at 2.1 GHz, with 20 cores each
○ Intel compiler

OpenACC in GBS-RHS for GPU

● Goal: adapt the work done with OpenMP offload to use OpenACC:
--> “replace” OpenMP directives by OpenACC directives for loop and data transfer:

○ first, using unified memory with OpenACC compiling with -acc -ta=tesla:managed

○ then optimize data transfer following current openmp offload data transfer

OpenACC in GBS

● Piz daint with PGI compiler
● bandwidth (Saxpy openacc test) = 474 GB/s
● theoritical peak 4,7 TFlops
● kernel compute bound if AI>9
● Kernels in RHS are memory bound

○ kernel1: AI = 7/24 --> Memory bound
○ kernel2: AI = 31/24 --> Memory bound

kernel1

kernel2

OpenACC in GBS-RHS for GPU
● We compared initial CPU serial implementation vs OpenACC one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1200, nz = 4
● 1 node piz-daint@CSCS

○ 1 NVIDIA Tesla P100 16GB
● PGI Compiling Environment

Subroutine CPU serial
(one core)

OpenACC (managed
option)

OpenACC (data transfer
optimized)

time(s) time (s) speed up time (s) speed up

Global RHS module 42.6 24 x1.75 10.6 x4

parallel gradients 30 10.5 x2.9 0.56 x53

diffusion operators 0.5 0.5 x1 0.25 x2

interpolation 0.92 1 x0.85 0.77 x1.2

transfer HtoD/DtoH
+ Gpu page fault

15 4.8

OpenACC in GBS-RHS for GPU

● Conclusion:
○ Compared to cpu (one core) version, we observed a speed up x2 for the Unified Memory

OpenACC version and a speed up x4 for the OpenACC version managing data transfer
○ Memory peak usage: 10GB

● In progress:
○ optimize data transfer
○ use multiple GPU
○ Test new GNU 11.2 compiler supporting OpenACC

OpenACC in GBS-RHS for GPU
● Nsys profiling

○ Multiple streams version using async/wait directives

