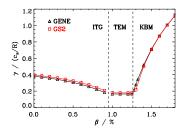
Turbulent Saturation (or Lack thereof) in TCV Plasmas

TSVV2 Workshop, December 2, 2021

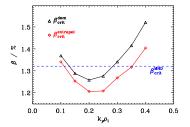
TCV Discharges

Here, focus on **TCV shots 69515 (PT), 69340 (NT)** *Compare Justin's shot table*:

Comp. Num.	Description	Constants of comparison	Discharge	Time (sec)	elong	delta	betaN	P_nbi (kW)	q95	lp (kA)	<ne> (x10^19 m^-3)</ne>	Comments
1	Diverted, PT	q95, betaN	69515	1.02	1.43	+0.29	0.97	636	3.17	242	4.0	not great q95 match
1	Diverted, NT	q95, betaN	69340	0.58	1.42	-0.28	0.97	362	2.94	218	3.3	with Langmuir probes
2	Diverted, PT	q95, ne, Pheat	69515	1.02	1.43	+0.29	0.97	636	3.17	242	4.0	not great q95 match
2	Diverted, NT	q95, ne, Pheat	69271	1.60	1.42	-0.27	1.59	612	2.90	217	4.4	*
3	Diverted, PT	lp, betaN, ne	69508	1.49	1.43	+0.28	1.12	735	3.31	217	4.0	
3	Diverted, NT	lp, betaN, ne	69340	0.58	1.42	-0.28	0.97	362	2.94	218	3.3	with Langmuir probes
4	Limited, PT	lp, betaN, ne	69511	1.50	1.34	+0.35	1.25	1030	3.38	228	3.4	
4	Limited, NT	lp, betaN, ne	69273	0.85	1.29	-0.29	1.30	475	2.85	228	3.4	
5	Limited, PT	lp, Pheat	69511	1.50	1.34	+0.35	1.25	1030	3.38	228	3.4	
5	Limited, NT	lp, Pheat	69273	1.70	1.26	-0.26	2.02	1020	2.79	226	4.6	
	Diverted, PT		69515	1.58	1.43	+0.34	1.84	1020	3.29	239	7.1	in H-mode; no CXRS so Ti=Te
-	Diverted, NT	-	69340	1.60	1.40	-0.27			2.92	217	5.4	with Langmuir probes


At r/a = 0.72, normalized gradients are

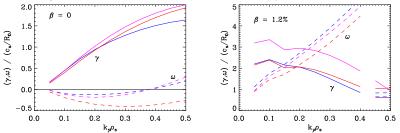
shot	R_0/L_{Ti}	R_0/L_{Te}	R/L_n
69515	5.43	10.48	6.77
69340	9.40	9.85	6.97


 \Rightarrow useful to look at *flipped gradients* scenario (PT geometry)

KBMs in Circular Tokamaks

Increasing normalized electron pressure β affects instabilities **Kinetic Ballooning Mode** (KBM): kinetic sibling of IBM

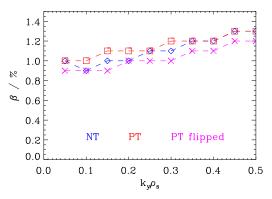
- ITG β-stabilized, TEM unaffected
- stiff KBM onset



 $\blacksquare \ \beta_{\rm KBM} \lesssim \beta_{\rm MHD}$

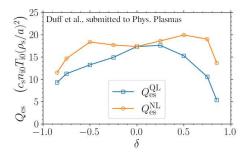
 Nonlinearly, low fluxes in KBM regime

KBMs in PT/NT (I)


Linear growth rates for PT, NT, and PT flipped:

- do we need better mode identification? is the electrostatic mode ITG, UTEM, or iTEM?
- multiple KBM branches? need to look at Φ structure
- near-zero ω : possible impact on saturation efficiency!

KBMs in PT/NT (II)


Extract β_{crit}^{KBM} from linear data:

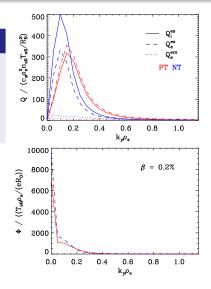
- PT has higher \(\beta_{crit}^{KBM}\) than NT, only due to lower gradients
 PT-flipped: lower threshold than NT
- more substantial increase in β threshold for $\delta \leq 0.7$?

Extreme Triangularities

Initial ITGae survey of NT/PT performance at extreme $|\delta|$: Joey Duff

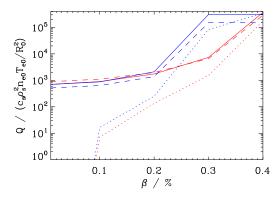
RT07: this year, no time for extreme δ , resubmitted for 2022 *(Stefano Coda: will be included in campaign)*

Should we look at other physics at extreme triangularity, e.g. MHD?


Nonlinear TCV Simulations

Justin TSVV presentation

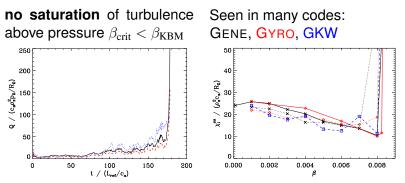
- mixed ITG-TEM regime
- $Q_{
 m i}\gtrsim Q_{
 m e}$
- swapped gradients: NT has lower fluxes


Nonlinear GENE runs:

- generally well-behaved, moderate resolutions
- very high fluxes, but not very stiff!
- substantial zonal flow

Nonlinear β Scans

Nonlinear β scan: experimental β just below some threshold:

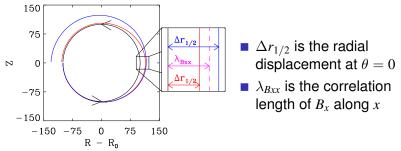


Still far below KBM treshold \Rightarrow we are in a runaway

Most likely candidate: **Non-Zonal Transition** (NZT), which is particularly restrictive at steep gradients

The High- β Runaway

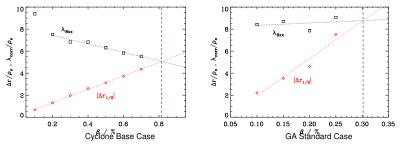
For 10 years, strange, unexplained simulation behavior:



Key observation: zonal flows absent as fluxes take off

Preliminary simulation results by Aylwin lantchenko (EPFL): Predicted β values are right at threshold in JT60-SA

Field Line Decorrelation


Non-resonant B_x : field line leaves flux surface from inboard, maximum Δr at outboard, returns (almost) to B_0 surface

However: if field line decorrelates, second half turn becomes independent of first, no return to original position Zonal flows shorted out \Rightarrow Non-Zonal Transition (NZT)

The Non-Zonal Transition

Can field line decorrelation really explain the runaway?

\Rightarrow excellent prediction of runaway (blue) by decorrelation!

Consequences for realistic applications:

heat transport time scale in NZT-marginal state can be $\sim \gamma^{-1}$, orders of magnitude faster than typical transport \Rightarrow stiff profiles, cannot increase plasma pressure anymore

Summary

- KBM threshold increased at negative triangularity (flipped gradients for comparison)
- very large fluxes, near runaway ⇒ non-zonal transition?
- extreme triangularity $|\delta| \gtrsim 0.7$ seems to be rather promising from turbulence standpoint