

Progress with practical implementation of neutrals models in SOLEDGE3X and perspectives

H. Bufferand, G. Ciraolo, K. Galazka, N. Rivals, <u>P. Tamain</u> and the SOLEDGE3X Team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Neutrals models in SOLEDGE3X

- ✤ 3 options: none, fluid and kinetic neutrals
- Fluid neutrals embedded in SOLEDGE3X:
 - Very crude diffusive model
 - Done in separate order 1 time-stepper compared (≠ plasma) bad initial choice
 - Current work 3-fold:
 - 1. recast neutrals solver into main time-stepper
 - 2. Implement more advanced neutrals model from TSVV5
 - 3. Move towards 3D PFCs configuration (TSVV6)
- Kinetic neutrals implemented via coupling to EIRENE
 - First experienced in TOKAM3X
 - Current work 2-fold:
 - 1. Revive 3D axi-symmetric PFC version in SOLEDGE3X for turbulence studies
 - 2. Test and improve coupling strategy on 2D mean-field reactor relevant cases

Fluid neutrals in SOLEDGE3X

- Fluid neutrals implemented with extremely crude model until now:
 - Purely diffusive with constant and unique diffusion coefficient
 - for each element X in the plasma

$$\partial_t n_{X0} + \vec{\nabla} \cdot \vec{\Gamma}_{X0} = S_{X0} - \langle \sigma v \rangle_i^{nX0} n_e n_{X0} + \langle \sigma v \rangle_r^{nX+} n_e n_{X+}$$
$$\vec{\Gamma}_{X0} = -D_n \vec{\nabla} n_{X0}$$

Boundary conditions: recycling / sputtering characterized by recycling matrix at wall
 + zero flux at center + possibly to add puff via S_{X0}

$$\vec{\Gamma}_{nX0} = -\sum_{X'} R_{X,X'} \sum_{i=1}^{Z_X} (\vec{\Gamma}_{X'i+} \cdot \vec{n}) \vec{n}$$

- ♦ $D_n \sim 1000 \ m^2 \ s^{-1} \Rightarrow$ **3D** implicit elliptic solver
 - Much less costly than potential solver due to isotropy (AMG extremely effective)

Exemple of application: TCV case

- R = 0.8, high recycling case, puff feedback on separatrix density
- Strong turbulence activity in divertor legs in spite of particle source essentially in divertor (≠ first attempt with TOKAM3X + neutrals)

[H. Bufferand et al., CPP2021, submitted]

Fluid neutrals: extension to full 3D PFCs (TSVV6)

- SOLEDGE3X from start designed to handle not axisymmetric PFCs, but never tested until now
- After correction of a few issues, first successful tests at running with 3D PFC (antenna) and fluid neutrals

Atoms density in 4 poloidal planes

Towards higher fidelity fluid neutrals model

- Simplistic diffusive model has **severe limitations**:
 - Neutrals transport independent on background plasma / recycling conditions
 - Exagerated neutrals penetration and radiative collapse at high densities
 - No track of momentum exchange which is key part of divertor dissipation
 - ⇒ Not suitable for high density cases, especially up to detachment
- Currently working on implementing fluid neutrals models from Horsten et al, 2017, Nucl Fusion 57, 116043

The new model in a nutshell (for discussion)

✤ Currently working on implementing fluid neutrals models from Horsten et al, 2017, Nucl Fusion 57, 116043: model 2 (no energy balance, $T_n = T_i$)

Particle balance:
$$\vec{\nabla} \cdot \left(n_n \left(u_{\parallel n} \vec{b} + \vec{u}_{\perp n} \right) \right) = S_{n_n}$$

Parallel momentum balance: $m_n \vec{\nabla} \cdot \left(n_n u_{\parallel n} \left(u_{\parallel n} \vec{b} + \vec{u}_{\perp n} \right) - \eta^n \nabla_{\parallel} u_{\parallel n} \vec{b} \right) = -\nabla_{\parallel} p_n + S_{m u_{n \parallel}}$
Perpendicular transport closure: $n_n \vec{u}_{\perp n} = -D_p^n \vec{\nabla}_{\perp} p_n$ $D_p^n = \frac{1}{m_n (\langle \sigma v \rangle_{cx,m} n_i + \langle \sigma v \rangle_i n_e)}$

Sources:
$$S_{n_n} = \langle \sigma v \rangle_r n_i n_e - \langle \sigma v \rangle_i n_n n_e$$

 $S_{mu_{n\parallel}} = m_n (\langle \sigma v \rangle_r n_i n_e + \langle \sigma v \rangle_{cx,m} n_n n_i) u_{\parallel i}$
 $-m_n (\langle \sigma v \rangle_i n_n n_e + \langle \sigma v \rangle_{cx,m} n_n n_i) u_{\parallel n}$
Viscosity: $\eta^n = \frac{p_n}{\langle \sigma v \rangle_{cx,m} n_i}$
P. Tamain | TSVV3 bi weekly meeting - Task 5 | 17-11-2021 | Page 7

Kinetic neutrals: TOKAM3X as pathfinder

- Worked performed initially in TOKAM3X [P. Tamain, PSI conference 2018]
 [D.M. Fan et al., NME2019]
- TOKAM3X coupled to EIRENE via same architecture as SOLEDGE2D-EIRENE 2D transport package

[H. Bufferand et al., Nucl. Fusion 55 (2015)]

- 2 key assumptions, non design-locked
 - $\tau_{neut} \ll \tau_{turb}$ + tests in 2D turbulence simulations \Rightarrow EIRENE used in timeindependent mode
 - assumes instantaneous recycling

How does it work in practise?

- Coupling to EIRENE is not direct but done through STYX interface
 - Eases setup of EIRENE with more user-friendly input files
 - Advanced sheath model based in PIC simulations [H. Bufferand et al, NF2015]
 - Provides additional diagnostics, e.g particle / momentum / energy balances decomposed by A&M reaction (new!)
 - Allows to reduce computational cost and improve stability of coupling through "short-cycling" methods (new!)

STYX: simplification of EIRENE 's setup

		*** 4 DATA FOR OFFICE OFFICITION AND ATOMIC DIVETCE HODIUS		
		*** 4. DATA FOR SPECIES SPECIFICATION AND ATOMIC PHYSICS MODULE		
###### SolEdge3X-EIRENE interface input file ####### CTVY				

		I AMJUEL H.4 2.1.5 EI 0 10.00000E+00 0.10000E+00 0.00000E+00		
		-1 0.00000E+00 0.00000E+00 0.00000E+00		
AM data.		2 AMJUEL H.102.1.5 EI 0 1 0.00000E+00 0.10000E+00 0.00000E+00		
		-1 0.00000E+00 0.00000E+00 0.00000E+00		
NNNNNN		3 HYDHEL H.1 3.1.8 CX 1 1 0.00000E+00 0.00000E+00 1.00000E+04		
		4 0.00000E+00 0.00000E+00 0.00000E+00		
		3 HYDHEL H.3 3.1.8 CX 1 1 0.00000E+00 0.00000E+00 1.00000E+04		
which am data to use for hydrogen isotopes ? (1: crude model, 2: ITER Kotov)		4 0.00000E+00 0.00000E+00 0.00000E+00		
am database = 2		4 AMJUEL H.4 2.2.9 EI 0 2 0.00000E+00 0.00000E+00 1.00000E+03		
_		4 0.00000E+00 0.00000E+00 0.00000E+00		
to build a for data allowed b (analdalate studies)		5 AMJUEL H.4 2.2.5g DS 0 2 0.00000E+00 0.10000E+00 0.00000E+00		
is tweaking of am data allowed ? (sensitivity studies)		-1 0.00000E+00 0.00000E+00 0.00000E+00		
isTweak = F		6 AMJUEL H.4 2.2.10 DS 0 2 0.00000E+00 0.05000E+00 0.00000E+00		
		-1 0.00000E+00 0.00000E+00 0.00000E+00		
use hardwired calculations for rate coefficients ?		7 AMJUEL H.4 2.1.8 RC 0 1 0.00000E+00 0.10000E+00 0.00000E+00		
isHardwired = F		-1 0.00000E+00 0.00000E+00 0.00000E+00		
		8 AMJUEL H.102.1.8 RC 0 1 1.36000E+01 0.10000E+00 0.00000E+00		
		-1 0.00000E+00 0.00000E+00 0.00000E+00		
11-11		9 AMJUEL H.2 3.2.3 CX 1 2 0.00000E+00 0.00000E+00 1.00000E+03		
wall parameters:		4 0.00000E+00 0.00000E+00 0.00000E+00		
NNNNNNNNNNNNNN	Automatically	10 AMDUEL H.4 2.2.11 ET 0 2 0.00000E+00 0.00000E+00 1.00000E+03		
	Automatically	4 0.00000E+00 0.00000E+00 0.00000E+00		
		11 AMTUEL H 4 2 2 12 DS 0 2 0 00000E+00 0 00000E+00 1 00000E+03		
number of types of plasma facing components	gonorated by	4 0 00000E+00 0 00000E+00 0 00000E+00		
n wall types = 1	generated by	12 AMTUEL H 4 2 2 14 DS 0 2 0 00000E+00 0 00000E+00 2 00000E+04		
	0 ,	4 0 00000E+00 0 00000E+00 0 00000E+00		
	CTVV			
which material is PFC type #1 made of ? (either Be, C, Fe, Mo, or W)				
material = Be				
		* NEUTRAL ATOMS OFFICE CARDS: NATURE OFFICE ARE CONSTRUCTED NATURE		
is mhims hydrogen recycling model activated for this PFC type ?		NEOTRAL ATOMS SPECIES CARDS: NATHI SPECIES ARE CONSIDERED, NATHI-		
mhims = 0				
what is the merupling coefficient on DECs of two #1) #Managing provinceto#		1 115 114 0 30000 0 0		
what is the recycling coefficient on Fits of type #1: - #Mspecies arguments#		2.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00		
R = 1., 1.		3 114 111 114 01000 000		
		0.000002+00 0.000002+00 0.000002+00 0.000002+00 0.000002 00		
what is the temperature for PFCs of type #1 [K] ?		* NEUTRAL MULECULES SPECIES CARDS: NMOLI SPECIES ARE CONSIDERED, NMOLI=		
T = 500.		1		
		1 H2 2 2 2 0 0 1 0 5 0 0		
sputtering model for PECs of type #1 ? (0 none, 1 constant, 2 Bohdansky)		4 115 113 0 0		
Sputer model = 0		-1.54000E+01 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00		
spucer_moder = 0		5 115 121 0 0		

Electron Energy Source by contribution

"Short –cycling" calls to EIRENE

- Monte-Carlo solver typically slower than plasma time-stepper (factor 2 to 3)
 - But plasma evolves very little from one step to another
- Solution: call Monte-Carlo only every so often and keep constant some info = shortcycling
 Branch at fixed interval or depending on

Short-cycling strategies and their pros/cons

- Several "levels" of short-cycling:
 - Level 1: keep sources constant
 - Level 2: scale sources with ion flux to the wall $S_n = S_n^{last \ call} \frac{\Gamma_i}{\Gamma_i^{last \ call}}$
 - Level 3: keep neutrals density distribution, recompute sources based on new plasma background and scale integral with ion flux to the wall

 Level 2 and level 3 have to be done "strata-wise", i.e. dependent on origin of atoms in EIRENE (handled by STYX)

Short-cycling strategies and their pros/cons

- Several "levels" of short-cycling:
 - Level 1: keep sources constant
 - Level 2: scale sources with ion flux to the wall $S_n = S_n^{last \ call} \frac{\Gamma_i}{\Gamma_i^{last \ call}}$
 - Level 3: keep neutrals density distribution, recompute sources based on new plasma background and scale integral with ion flux to the wall

Level	Pros	Cons
1	Fast and very simple	Non conservative Poor stability in stiff regimes Fully explicit
2	Fast and simple Conservative	Poor stability in stiff regimes Fully explicit
3	Conservative Improved stability Opens way to partial implicitation	Complex to code and understand (handled by STYX) A bit slower

Coupling to EIRENE in 3D available in SOLEDGE3X

- After move to SOLEDGE3X, kinetic neutrals used only in 2D
- On-going effort to revive 3D version of coupling
- First 3D WEST case and full kinetic neutrals obtained recently

Making Soledge3X kinetic neutrals module available

- SOLEDGE3X-STYX-EIRENE currently intricated
 - Cross-dependencies between modules and functions
 - Compilation performed as a single code, not as separate libraries
- On-going effort to make a clean separation between the 3 codes
- Once done, STYX could be made available as a library to the rest of the community to couple 2D / 3D fluid edge plasma codes to EIRENE
 - Readily planned for HDG code

Summary and prospects

- Progress on fluid neutrals side:
 - SOLEDGE3X simulations with simplistic fluid neutrals running routinely up in low to high-ish recycling regime => soon to be standard way of running SOLEDGE3X (to get the sources right self-consistently)
 - Extension of plasma solver and fluid neutrals to handle 3D PFC configurations
 - More advanced fluid neutrals model mandatory for dissipative regimes, implementation on-going (high-priority)
- Progress on kinetic neutrals side:
 - Coupling to EIRENE via STYX interface revived in 3D following TOKAM3X
 - Intensive work on STYX coupling strategy via short-cycling to improve stability and save computing time
 - Make STYX(-EIRENE) a separate module from SOLEDGE3X to make it available to other codes (planned for HDG)

Additional slides

Name of presenter | Conference | Venue | Date | Page 18

Progress in kinetic neutrals model

Recap of EIRENE Atomic & Molecular models setup in SOLEDGE3X

Species	Reaction Name	Reaction	SOLEDGE3X Standard	New "Advanced" SOLPS-ITER-like (~Kotov model)
Atoms H	Ionisation	$e + H(1s) \rightarrow e + H^+ + e$	\checkmark	\checkmark
	Recombination	$H^+ + e \rightarrow H(1s)$	\checkmark	\checkmark
	Charge Exchange	$p + H(1s) \to H(1s) + p$	\checkmark	\checkmark
Molecules H ₂	Dissociative Ionisation	$e + H_2 \rightarrow 2e + H + H^+$	\checkmark	√+
	Dissociation	$e + H_2 \rightarrow e + H + H$	\checkmark	√+
	Molecule Ionisation	$e + H_2 \rightarrow 2e + H_2^+$	✓	√+
	Charge Exchange	$p + H_2 \rightarrow H + H_2^{+}$	×	\checkmark
	Elastic Collision	$p + H_2 \rightarrow p + H_2$	×	✓
Molecule Ion H ₂ +	Dissociative Ionisation	$e + H_2^+ \rightarrow 2e + H^+ + H^+$	\checkmark	√+
	Dissociation	$e + H_2^+ \rightarrow e + H + H^+$	\checkmark	√+
	Dissociative Recombination	$e + H_2^+ \rightarrow H + H$	\checkmark	√+

2 new reactions have been shown to be important in JET [1]:

- Molecule CX
- Ion-Molecule elastic collision
- Posed strong numerical stability issues, especially in cold plasma regions

[1]: V. Kotov (2008) Plasma Phys. Control. Fusion 50 105012

" violation contractions rates coefficients fits now include dependency in n (pop. effects)

Now fixed

Strong impact of additional reactions on predictions

Key role of elastic collisions with molecules in divertor target fluxes

