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Energetic Particles

Energetic Particles (EPs) are supra-thermal plasma species
Low density, low collisionality, moderate pressure
Sources:

I Alpha particles: born isotropically with E=3.5 MeV
I NBI particles: born anisotropically with Ebirth

I “PINI” (most present day machines): components Ebirth, Ebirth/2, Ebirth/3
I “NINI” (e.g. ITER): only Ebirth

I Alpha + NBI: slow down from birth to thermal (collisions with electrons)

I ICRH, energy pumped into cyclotron resonance → energy into v⊥ (µ)

Our interest is mostly dictated by resonant interaction with Alfvén waves (MHD-like Alfvén
eigenmodes (AEs) & non-perturbative modes (EPMs)). Also Energetic particle driven
Geodesic Acoustic Modes (EGAMs).
In general, trans-Alfvénic: Alfvénic physics typically depends on v‖ resonances (vA, vA/3, . . . )
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Energetic Particles & instabilities

I AEs (e.g. Toroidal AE (TAE)) are a global problem, existence comes from profile
variation and k‖ matching of Alfvén dispersion relation.

TAE drive comes from radial pressure gradient of EPs
TAE damping is typically non-local (radiative, continuum, and electron Landau damping)

EGAMs, (also GAE), can exist with n=0.
Drive is from the anistropy of the EP distribution
Sources of anisotropy/velocity space gradients:
I Turn on a beam, initially “bump-on-tail”. This effect ends after tslow.down

I after this, dynamic equilibrium reached

I NBI beams have preferred pitch (geometric), injection anisotropic

I ICRH “pulls out” tails of distribution

I isotropic → anisotropic possible due to losses
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ORB5

“ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal
geometry” [for details, see Lanti 2020]

I delta-f modified distribution function discretized with PIC
I Fields solved using finite elements

I Filter applied in toroidal and poloidal mode numbers

I Global electromagnetic (EM) simulations a difficult problem: small k⊥ (e.g. MHD)
particularly challenging for high beta.
I Effectively mitigates with the so-called cancellation problem using the pullback

scheme [Mishchenko 2019] (leads to an order of magn. increase of time step)

I ES: adiabatic, hybrid, or kinetic electrons, EM drift-kinetic electrons (or fluid)

I Previously used for turbulence studies as well as EP physics (separately, and interaction)
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ORB5

ORB5’s Vlasov equation (shown electrostatically, absence of collisions/sources)

dδf

dt
= −df0

dt

Total (Lagrangian) derivative (for plasma species s)1,

dfs
dt

=
∂fs
∂t

+
∂fs
∂R
· Ṙ +

∂fs
∂v‖

v̇‖ = 0

full-f Vlasov equation, requires evaluation of background f0 and its gradients at particle
positions
Note: No assumption (here) made about smallness of δf to f0

1We’ll come back to this later
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Distribution functions

I Maxwellian: local, shifted, canonical

I Bump-on-tail

I Isotropic slowing down

I Anisotropic slowing down

I Constant of Motion distribution functions2

I Numerical distribution functions

Analytical expressions, semi-analytical expressions, fully-numerical

2C. di Troia+, difficult to use for realistic experiments in practice
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Maxwellian

F0,f,Max. =
nf(r)

(2πv2
th(r))3/2

exp (−E/v2
th) exp

(
−
u‖
2

(u‖ − 2v‖)/ v2
th

)
in absence of shift (u‖ → 0), reduces to function of Energy, radius

T. Hayward-Schneider Fusion HPC Workshop, 2021 8



Maxwellian

F0,f,Max. =
nf(r)

(2πv2
th(r))3/2

exp (−E/v2
th) exp

(
−
u‖
2

(u‖ − 2v‖)/ v2
th

)
in absence of shift (u‖ → 0), reduces to function of Energy, radius

T. Hayward-Schneider Fusion HPC Workshop, 2021 9



Bump-on-tail

F0,f,BoT = C · nf(r) exp(−E ·mf/Tf) exp(−v2
‖,f /(2Tf)) cosh(v‖v‖,f /Tf)

function of energy, radius, v‖

I “Toy” distribution function with strong
anisotropy (ideal to study EGAMs)

I Original version implemented for
[Zarzoso+, NF, 2014]
I Based on previous GYSELA work

I Originally zero radial dependence, since
extended to include n(r)
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Isotropic Slowing down3

F0,f,SD =
3nf(r)

4π

Θ(v0 − |v |)
(vc(r)3 + |v |3) ln(1 + v0/vc(r))

also function of Energy (|v |), radius

I Decent approximation for alpha particles

3Vannini+, thesis+paper 2021+
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Anisotropic Slowing down4

F0,f,ASD = F0,f,SD(r ,E ) · C exp
(
−(ξ − ξ0)2/(2∆ξ2)

)
where ξ = v‖/|v |, → function of energy, radius, and parallel velocity

‘C’ is a messy term of error functions, . . .
derivatives ‘tricky’ → semi-analytical
F0 analytic, but compute ∂F0/∂X numerically

I Reasonable approximation for NBI

4Rettino+, paper 2021+
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Numerical validation for analytic distributions

When implementing purely analytical distribution functions:
I Need analytical derivatives of F0 w.r.t. E , v‖, ψ = r2

I ... consistent with quirks of ORB5

I Validate analytical expressions by comparing to numerical derivatives
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Validating F0 numerically

I Output F0 on mesh (E , v‖, ψ)

I Implement finite differences evaluation of
∂F0
∂X

I Output ∂F0
∂X on mesh

I Output ∂F0
∂X FD

on mesh

I We can probably reverse this?
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Numerical F0

I Assume we have F0 on mesh (vertices) (E , v‖, ψ)
I Can test with the output on previous slide

I F0 for markers can be interpolated on the mesh

I Consider 3 example markers

I Blue is well behaved
I Red requires point with µ < 0 for interpolation
I Green even worse
I Approach: smoothly continue F0 across µ = 0
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RABBIT

I RABBIT [Weiland+, NF, 2018+19]
I real-time capable NBI code

I Describes NBI distribution function in experiment

I Non-Monte-Carlo method gives smooth function,
good for derivatives

I We use RABBIT for ASDEX Upgrade (AUG) NBI
F0 (e.g. shot #31213 (NLED-AUG)) in the
time-independent mode

f−(v , ξ) =
1

2π

τs
v3 + v3

c

·

∞∑
l=0

(
l +

1

2

)
Pl(ξ)Sl ·

(
v3

0 + v3
c

v3 + v3
c

v3

v3
0

)β
3
l(l+1)

ξ = v‖/v
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RABBIT AUG example

AUG shot #31213 at t=0.84 s (“NLED-AUG” case5)

F0(|v |,Pl(ξ)) r=rref
F0(ξ, |v |) r=rref

5Lauber+, IAEA FEC 2018
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Mapping from RABBIT to ORB5

I Coordinate mapping from
(|v |, ξ, ρt)→ (E , v‖, ψ)

I Some additional details (interpolation
objects, etc.)

I Fill in F0(µ . 0)
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RABBIT AUG example

Clockwise (from TL): triple [nominal], single, single-no-pitch, triple-no-pitch.
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ORB5 RABBIT AUG example6

n=1 EPM

amplitude of poloidal harmonics ES potential
vs time

6detailed EGAM study in Rettino+ 2021+
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ITER 15 MA Scenario
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Slowing down

Maxwellian (900keV) studied in
[Hayward-Schneider+ NF 2021]

With realistic 3.5 MeV isotropic
slowing down:

→ mode drive increased
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iter_0.985_mm_nl_n26_mr200_SD_quick_dt10: 26 iter_0.985_mm_nl_n26_mr200_maxw_quick_dt10: 26

(low resolution run)
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Slowing down

γ = 0.0218 ωA (high resolution
run)
c.f. ≈ 0.16 ωA for Maxwellian

→ Ready to study nominal
parameters
(e.g. EP FLR at nominal
density)

Bulk FLR always kept
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Back to theory – equilibrium distribution functions

Footnote 1 promised we’d come back to the total derivative (Vlasov equation)

dfs
dt

=
∂fs
∂t

+
∂fs
∂R
· Ṙ +

∂fs
∂v‖

v̇‖ = 0

All distribution functions mentioned (except canonical Maxwellian, C. di Troia constants of
motion distribution function, or local Maxwellian in homogeneous plasma) are not actually
equilibrium distribution functions since they do not depend only on constants of motion.
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Back to theory – equilibrium distribution functions

In general true for anisotropic functions

(
∂f EP0
∂v‖
6= 0

)
, even with homogeneous profiles.

∂f EP0

∂v‖
v̇‖ =

∂f EP0

∂v‖
v̇‖

∣∣∣
0

+
∂f EP0

∂v‖
v̇‖

∣∣∣
1

At least for linear simulations, we need this term to disappear.
We can use a “trick”:

v̇‖ = v̇‖

∣∣∣
1

= − e

m

B∗

B∗‖
· ∇Φ

Circa 2014, EGAMs with bump-on-tail paper, solved in [Zarzoso+ NF 2014] with the trick7:

v̇‖ = Ė
1

v‖

7Reference also includes a nice justification of why this should be fine
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Back to theory – equilibrium distribution functions

Comparing these, we find different EGAM excitation.

Why?

Total derivative can alternatively be written in other coordinates, e.g. µ if we keep explicit
poloidal dependence (r , θ, µ,E ). Different models like keeping/neglecting poloidal dependence.

Equivalent to setting (in F0), v‖ →

v‖H = sign(v‖)
√

2|E− µBref | “deeply passing” model

v‖H = sign(v‖)
√

2(E− µB) “full orbit” model
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Back to theory – equilibrium distribution functions

Put it all together, we see:

‘neglecting θ’ = ‘replacing B with
B0’ = ‘v̇‖ = Ė 1

v‖
’

and

‘v̇‖ = v̇‖

∣∣∣
1
’ = ‘full theta dependence’
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Summary

Implementation:

I Additional analytical distribution
functions, for use in Energetic Particle
modelling have been added to the global
gyrokinetic code ORB5

I Fully numerical handling allows the
coupling to external distribution function
codes (e.g. RABBIT for NBI)

I Numerical derivatives allow:
I Validation of analytical implementations
I Semi-analytical distribution functions
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Physics theory:

I Difference in models when treating
non-equilibrium distribution functions
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