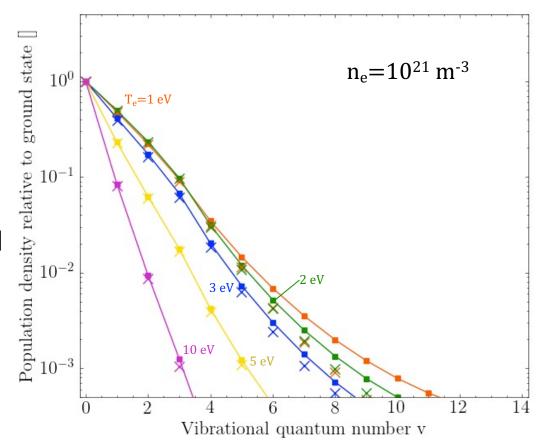
Yacora status at Aalto

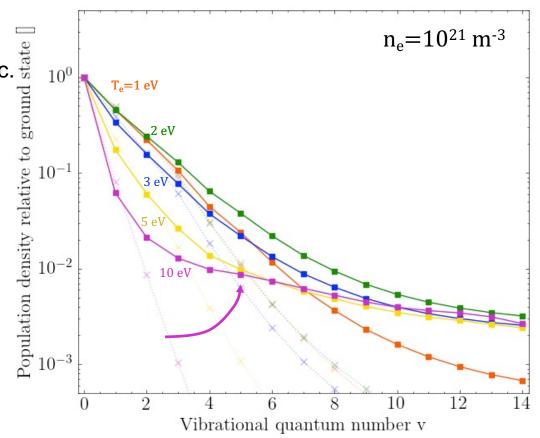
Andreas Holm
Eirene-Yacora discussion sesh
Dec 8th 2021
Remote connection


"H2VIBR-Yacora" inputs created for Eirene-Yacora comparison based on the instructions in the manual received

- Input creation routines were written for CRUMPET
 - → Automated duplication of CRUMPET CR setups that can be supplied to Yacora
- The Yacora setup includes H2VIBR and AMJUEL rates
 - Special structure to account for the n_e-dependence of the AMJUEL rates
- H2VIBR-Yacora simulations were compared to Eirene simulations considering the same reactions

Vibrational distributions P(v) calculated using transport-free Eirene $H_2(v)$ simulations match those predicted by Yacora

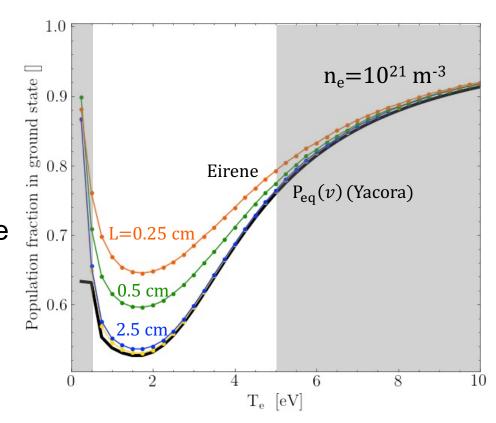
- The H2VIBR reactions were supplied to Yacora
- $T_e < 1 \text{ eV}$: recombination-dominated plasmas
- $T_e \gtrsim 5~eV \colon n_{H2} \to 0~m^{-3}$ and ionization-dominated plasmas
- No electronic transitions considered in the Eirene $H_2(v)$ setup \rightarrow P(v) density-independent


A set of "standard Yacora" simulations were run for the project by Dirk

- Includes the standard Yacora reaction rates in the (presumably) IPP A&M database
- Considers all available reactions (redistribution via electronically excited states, off-diagonal vibrational transitions, quenching, etc)
- Used to evaluate the effect of additional CR processes on the vibrational distribution predicted by the H2VIBR rates

Re-distribution via electronically excited states shifts P(v) to higher v, increasing the effective dissociation rate

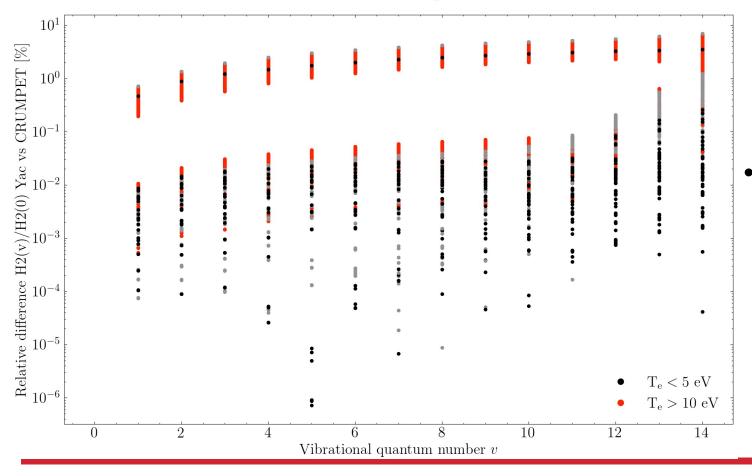
- Full set of Yacora CR data used
 - Electronic transitions, full vibrational transition matrix, etc.
- Strong dependency of reaction rates on v
- → Even small shifts of P(v) may significantly impact the effective rates
- → The Eirene H₂(v) setup cannot capture all CR effects



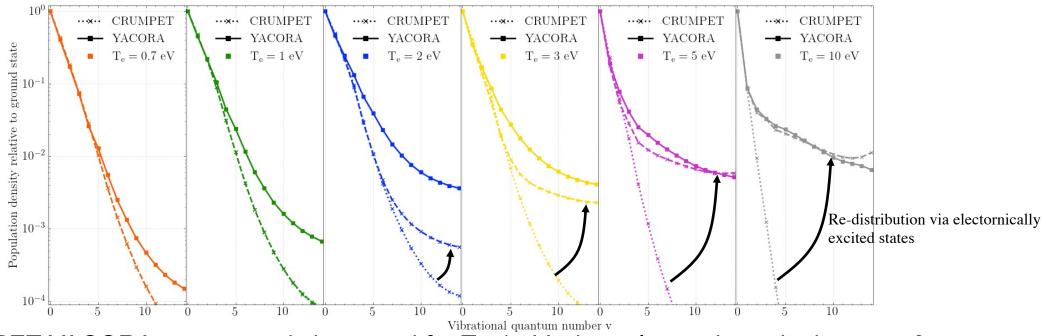
Yacora and Eirene were used to evaluate $\lambda_{mfp}^{P_{eq}(v)}$

n _e	10 ²¹ m ⁻³	10 ²⁰ m ⁻³	10 ¹⁹ m ⁻³
$\lambda_{mfp}^{P_{eq}(v)}$	~2.5 cm	~10 cm	>10 cm

- If the domain size is shorter than $\lambda_{mfp}^{Peq(v)}$ the molecule escapes before reaching $P_{eq}(v)$
- \rightarrow Shifts P(v) to lower v


Yacora was used to assess the poloidal vibrational equilibrium distribution for a 1D flux tube

• Eirene simulations on a 1D flux tube do not achieve $P_{eq}(v)$ due to the finite $\lambda_{mfp}^{P_{eq}(v)}$


CRUMPET was benchmarked against Yacora using the H2VIBR-Yacora setup

The codes agree within a few percent for *v*<11 and T_e<10 eV

CRUMPET simulations considering vibrationally resolved electronic states were compared to Yacora simulations

- CRUMPET-YACORA agreement is improved for T_e>1 eV when electronic excitation to n=3 are considered
- T_e<3 eV predictions unaffected (ΔE>>T_e) → other processes not considered
 - Quenching, neutral-/heavy particle interactions
 - Absolute impact small?

Yacora is a flexible solver that is easily understood: scientifically relevant results in a few months

- Successfully created and evaluated a customized CR setup
 - Using the executable only→ Unix executable would be useful for future use
- The A&M database used by Yacora is a very valuable resource
- Scrping the surface: "advanced" options not yet explored
 - Neutral-neutral reactions
 - Diffusive transport approximation
 - H₂ velocity-dependent rates (?)
 - Photon transport (?)
 - Momentum and energy terms (?)
- Much more flexibility and insight compared to Yacora on the Web

