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The GBS code

e GBS code [M. Giacomin et al 2021, JCP submitted] is

sed on the drift-reduced Braginskii equations
Magnetic pre-sheath boundary conditions
Heating and fuelling modelled self consistently
by coupling with kinetic neutral model

TCV-like geometry with rectangular poloidal
cross section

Full-device modelling (core + edge + SOL)
Arbitrary magnetic field

Density source from
neutrals ionization
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Plasma model and neutrals coupling

[/

Plasma described by Braginskii drift-reduced equations:
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to curvature term
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[M. Giacomin et al 2021, JCP submitted]



Kinetic mono atomic neutral species &
of of n 400 |
atn-*-v. axn:_ viz n_ ch fn_#fi + vrecfn
\ o 350
with:
e |onization Viz = Ne(Ve0iz) o, i
e Charge exchange Vex = Ni(Vi0cx), 250 |
e Recombination Vyec = ne<’vearec>vf ~. 200 |
e e-n collisions Ven = Ne(VeOen) v,
150 ¢
Boundary conditions : emission or reflection, one neutral 100 |
for each particle, ion or neutral, impacting the wall ool
lon out flux to wall include parallel and drift velocity ) -— , ,
0 I 100 200 300

Two limits, valid in typical SOL conditions:
e Neutral adiabatic regime 7, < Tun

e Neutral lengths smaller than parallel lengths Awgp. << 1/k



A statistical noise free approach to the neutral model K

Integral equation for the neutral distribution function:

Ty S(x'.v. ¢ r’
eyt = [ [ B, v, )+5(r—vé).f,l(x',v,t')}exp (—1 / ueﬂ-(x",t">dr“> ar
0 0

(%

Integrate in velocity space and obtain discrete matrix system for neutral density:

Np chKp 'p (1 - areﬂ)Kb »p Iy 4 Ny rec T Mpfouti]
L out.n chKp b (1 - areﬂ)Kb vb Loutn Doutrec + Iﬂoul.n[oul.i]
where kernels K includes contribute from reflection on walls

Solve and evaluate higher moments: I, " T
n, n /[’ "n

[C. Wersal and P. Ricci 2015 Nucl. Fusion] Page 5
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First diverted turbulence simulations with neutrals

[/

3 sim with increasing neutrals effects (same SOL input power):
e Higher ionization source in core
e Lower temperature and higher resistivity v X Te_?’/2
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Density shoulder formation and neutrals contribute @1
With higher density source (and resistivity):
e Increasing near SOL e-folding lengths
e Increasing far SOL density and pressure
. ., PP sep
1.2 .
0.8 | Szz ] N N j
>2‘0 OI 2'0 4'0 Gti) 8‘0 100 23 x; 23 410 610 8::: 100
(R — Raep)/pso (R — Raep)/ pso

Analysis of the roles of: perpendicular flux, parallel flux, ionization source s
age
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Higher density due to lower parallel transport 0!
F_LZFExB’:ﬁ(?/¢ F”’:ﬁvn
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Detailed analysis of blobs: With higher density source:
constant perpendicular transport Lower T_along flux line — Decrease in F///Fl

» _ — increase in far SOL density
[D. Mancini et al 2021, Nucl. Fusion] Page 8
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New plasma model: molecular species

Plasma described by density, velocity and temperatures of
electrons, atomic ions and molecular ions :

on 1 2
© e , Ne —I—— C e —6?20 _v NeUle +Viz Np —Vyec n
+Viz,D2nD2 — Vrec,D;nD; + Vdiss-iz, D2 TV Dy + l/diss—iz,D; nDQL o Vdiss—rec,D; nD;
8711)5L 1 2
5 = gl0 ot ElCpy)—enpy C(O) =V (npy vy pp )+ Viapa1Ds ~ Viee; Ty

+VCX:D2—D+nD2 + NpVex,D—D+ + nD;_(Vdiss—iz,D; + l/diss,D; + I/diss—rec,D;)
+ quasi neutrality: np+ = ne —npy

e Zdhanov closure
e Low molecules density "'p; << ND+

e Magnetic boundary conditions
g y [A. Coroado et al 2021, Nuclear Fusion,

accepted manuscript]



Neutral species kinetic equations ()

Atomic and molecular neutrals considered:

afD 8fD np np.
W‘I‘Va—x — _Viz,DfD_VCX,D fD - np+ fD+ _‘_Vrec,D7L fl-l)__l_ycx,DQ—D+ nDj_ fD+ _VCX,D—D; fD
+ fD2 (QI/diss,Dg + I/diss—iz,Dg) + fD; (QVdiss-rec,D; + Vdiss,D;r)
8fD. 6fD np. np
5 TV = “Vanafps = Vexpy | fp2 — ﬁfD; + Veee,nf fD§ HVex,p—Dyf o Iy
2 2

- I/CX,DQ—D+ fDQ - fD2 (l/diss,Dz - Vdiss—iz,Dg)

Boundary conditions : emission or reflection for each particle impacting the wall, or
association of atomic ions and neutrals in molecular neutrals

Same limits, valid in typical SOL conditions:
e Neutral adiabatic regime 7, < T

e Neutral lengths smaller than parallel lengths Awgp.n << 1/k
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Densities evaluated solving one linear system

=7
Two coupled integral equations solved as a linear system:
np A'{ll ]\/[12 ]\[13 O np / anC,D 4 nDlSS, 5 \
Powen | | Moy My My 0 Lout,0 N ieeP” 4 pot prefhDT
— / | | )
np, Msy Msy Mss My np, nrDeg’D
/] / y y + +
Lout,n: My My My Myy) \LourD KFIE;’DQ T St Ml

e sub-matrices M include the different kernel functions K, considering also
reflection and association on walls
e Known terms comes from recombination, reflection or dissociation of ions

Possibility to extend the model to include any kind of species

[A. Coroado et al 2021, Nuclear Fusion,
accepted manuscript]



i
Sy
Va \,\)/\\
\_
=z

Densities evaluated solving one linear system

=7
Two coupled integral equations solved as a linear system:
Old atomic neutrals matrix
t
/N, ,. .

np A'{ll Aflz ]\[13 O np / anC,DﬂL 4 ncl‘i)lss,D2 \

Fout,D _ Ale A’/IQQ A{Q(} 0 Fout,D n FIBC’D+ + F(l))ut DFIBH’D+

— s
"Dy Mszy Msy Mss Msy nD, niso?

/] /] ' ( 7D+ ﬂ*D+ f,D+

Fown/  \Mu My Mg M) \Lown/  \ppels y pptPeppi? )

e sub-matrices M include the different kernel functions K, considering also
reflection and association on walls
e Known terms comes from recombination, reflection or dissociation of ions

Possibility to extend the model to include any kind of species

[A. Coroado et al 2021, Nuclear Fusion,
accepted manuscript]
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Test simulation with multispecies model

Small, lower single null configuration, as testbed:
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Summary
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e A neutral model coupled with the GBS plasma model is implemented
e The monoatomic neutral model is tested and used to investigate the role of neutrals
in the shoulder formation, giving insights on the phenomenon

e A new framework for multispecies plasma and neutral is introduced:
o Plasma model developed with Zdhanov closure and extended magnetic
boundary conditions
o Neutrals model developed with multiple neutral distribution functions and
equations solved in a bigger linear system
e The framework is tested in a simulation with molecular and atomic ions and neutrals



