

Turbulence with profile shaping

A. v. Stechow (IPP) and D. Carralero (CIEMAT) for the W7-X turbulence topical group, 28.1.2021

- \blacksquare our only systematic control knob is ECH power deposition for T_e
- density profile variations are non-stationary and difficult to reproduce consistently
- turbulence observations of "improved confinement" in OP1: piggy-back measurements with low systematic coverage

Key core density turbulence diagnostic systems

phase contrast imaging: (roughly) triangular plane Doppler reflectometer: bean plane

- § continuously measures **absolute, line-integrated flucs**.
- **•** poloidally resolved $(k \approx 2{\text -}20 \text{ cm}^{-1})$
- § no radial resolution in OP1 (upcoming in OP2)
- signal dominated by largest fluctuations (typ. edge $/E_r$ well)
- typ. result: frequency-wavenumber spectrum $S_{abs}(k, f, t)$

- § measures **local fluctuations** at probing frequency (= density)
- **fixed k**_⊥ (for V-band, k_⊥ ≈ 7-10 cm⁻¹, k_⊥ ρ_i ~ 1)
- § **radially scanning** (τ ≈ 250 ms), resolution depends on local ∇n
- accessible density range limited by frequency band
- typ. result: radial profile of E_r and fluctuation power $S_{rel}(f, r, t)$

Benefits of density profile control

- **ECRH + flat density profiles:** ion temperature limited to $T_i \le 1.6$ keV in accessible n_e and P_{ECRH} parameter space
	- large shortfall compared to neoclassical expectations (w/ moderate anomalous losses)
- § **ECRH + peaked density profiles:** highest W7-X ion temperatures and β achieved **transiently** w/ Er and shear increase
	- ion temperature maximum scales with density gradient

Core density profile control: pellet fueling power balance

- **ECRH + flat density profiles:** ion temperature limited to $T_i \lesssim 1.6$ keV in accessible n_e and P_{ECRH} parameter space
	- large shortfall compared to neoclassical expectations (w/ moderate anomalous losses)
- § **ECRH + peaked density profiles:** highest W7-X ion temperatures and β achieved **transiently** w/ Er and shear increase
	- ion temperature maximum scales with density gradient
- **E_r effects on turbulence:** see talk by T. Estrada on Feb 25 in this TG

- radially resolved density turbulence regimes in **ECH discharges**
- turbulence during high-performance **pellet fueling experiments**
- core density peaking and turbulence response in **pure NBI discharges**
- § **NBI + ECH mix** and density flush-out
- § turbulence and impurity transport during **post-NBI edge profile changes**
- edge profile by solid material injections: massive LBO and Boron dropper
- § summary: **general gradient dependencies**

ECRH discharges, gas puffing

fluctuation profiles from V-band Doppler reflectometer (DR), covering most of OP1.2b operational space:

- § **generally:** edge region dominates fluctuation power, decreases towards core, **profiles similar**
- **a fraction of the discharges:** strong suppression of fluctuations towards the core $(\rho < 0.7)$.
- seems to depend on average density, with threshold value $n_{e,ave} \sim 5 \, 10^{19} \, \text{m}^{-3}$.

Fluctuation suppression in low ne, ECRH scenarios

EUTERPE simulations: fluctuation profiles (non-linear, flux surface, adiabatic electrons)

[E. Sánchez*,* priv. comm.]

two representative shots above and below threshold:

- DR signal power S falls by an order of magnitude at $\rho = 0.6$ -0.7
- Gorresponds to x3 drop in fluctuation amplitude δ n and x10 drop in heat flux q_i
- **EUTERPE** nonlinear simulations show moderate drop in fluctuations (~50%), but almost no variation in q_i .
- **•** power balance indicates a small decrease $(~10%)$ in turbulent heat flux in the same region.

Fluctuation suppression in low ne, ECRH scenarios

two representative shots above and below threshold:

■ DR signal power S falls by an order of magnitude at $\rho = 0.6$ -0.7

The observed change in fluctuations in k $\alpha \approx 1$ is not associated to a charge. **The observed change in fluctuations in k**⟂r**ⁱ ~ 1 is not associated to a change in ion turbulent transport.**

 $\mathcal{L} = \mathcal{L} \times \mathcal{L}$ in fluctuations show moderate drop in fluctuations ($\mathcal{L} = \mathcal{L} \times \mathcal{L}$

• power balance indicates a small decrease (\sim **10%) in turbulent heat flux in the same region.**

.

1500

[E. Sánchez*,* priv. comm.]

2000

 $r/a = 0.51082$ $7a = 0.54357$

 $r/a = 0.60376$

 $r/a = 0.63171$

 $7a = 0.65646$

 $r/a = 0.51082$

 $r/a = 0.54357$

 $r/a = 0.60376$

 $r/a = 0.63171$ $r/a = 0.65646$

Core density profile control: Pellet fueling (PCI)

- **•** rapid increase in W_{dia} observed after pellet injection (together with T_e , T_i)
- PCI fluctuation amplitude significantly reduced during W_{dia} increase
- § during reduced fluctuation phase: **multiple phase velocities observed**
- **regular fluctuations and k-f-spectra recovered during** W_{dia} **drop**

[A. v. Stechow *et al., Phys. Rev. Lett.* (submitted)] 11

Core density profile control: Pellet fueling (DR)

- DR Measurements: \tilde{n}_e drops during the post-pellet enhanced confinement phase in the range $r \approx 0.6$ -0.8
- more pronounced in high iota than standard config.

Core density profile control: linear simulations

- linear GENE runs for a large set of ∇T and ∇n in different magnetic geometries (w/ T_i=T_e, E_r=0, β=0) [Alcusón, Xanthopoulos *et al.*, PPCF **62** (2020)]
- \bullet W7-X: stability "valley" where $a/L_T \approx a/L_n$
- § gyrokinetic model: Stabilty region for W7-X derives from maximum-J property: dJ/ds < 0 [Proll *et al.,* Phys. Rev. Lett. **108** (2012)] and [Plunk *et al.*, J. Plasma Phys. **83** (2017)]
- § with max-J: **(1) ITG stabilizes quickly** with ∇n and **(2) TEM respons weakly** to ∇n
- E Linear EUTERPE runs confirm that high iota configuration features higher γ than standard [T. Estrada *et al.*, NF **61** (2021), accepted]

Core density profile control: nonlinear simulations

Core density profile control: pure NBI (PCI)

Ion Power Balance W7X20181009.43 Electron Power Balance W7X20181009.43 1000 2000 Neoclassical Neoclassica Neutral Beam Neutral Beam 1800 900 a^{i} a/a t Term 1600 800 1400 700 Σ ¹²⁰⁰ 600 [KW] $\frac{1}{8}$ 1000 Power 500 800 400 600 300 400 200 200 100 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 r/a r/a [S. Lazerson *et al.*, in preparation for NF]

- § sharp **increase of density gradient within half radius**
- $r/a > 0.5$ unchanged from ECH case
- no ion temperature increase
- § **power balance shows no time variation**, small neoclassical transport
- **PCI fluctuations largely unmodified** by core gradients
- 15 § some programs: intermittent low-f ñ (f < 10 kHz) with peaking

BEAMS3D + NEOTRANSP power balance

Core density profile control: pure NBI (DR)

 -10

 -15

 -20

 -25

 -30

Core density profile control: NBI + ECRH

- § **first phase: typical ECRH** conditions
- § **second phase (NBI + 5MW ECH):**
	- slight increase of a/L_{Ti} and overall density
	- \blacksquare T_{i.core} still close to ECRH values.
- § **third phase (NBI + 0.7MW ECH):**
	- § **a/Ln increased → turbulence suppression**
	- \blacksquare **T**_{i,core} ~ 2 keV is achieved.

Core density profile control: NBI + ECRH

- addition of ECH (1MW O2) to pure NBI plasma: **transient rise in central T**_i to \approx 2 keV
- § **core density reduction** (flush-out?)
- density gradient at $\rho \gtrsim 0.3$ remains
- PCI turbulent fluctuations only slightly increased
- § low-frequency, **coherent core-localized mode** observed
- § turbulence-compatible heating mix, but MHD unstable?

Edge density profile control: modified fueling by NBI

§ **NBI + 1MW ECH:**

- density rise (core + edge), fluctuations increase
- § **low ECH power after NBI shutoff:**
	- edge density drops: increased gradient at $p \gtrsim 0.5$
	- fluctuations decrease as W_{dia} increases
	- multiple phase velocities in k-f-spectra

IPP

Edge density profile control: modified fueling by NBI

laser blow-off provides radially resolved particle transport measurements

■ Modified density fluctuations are a signature of both reduced heat and particle transport

Edge density gradient control: LBO

- massive LBO injections temporarily reduce PCI fluctuations
- above threshold mass: **transient W**_{dia} and **T**_i increase
- **time resolved density profiles:**
	- plasma shrinks significantly (very high SOL radiation)
	- § performance increases with **moderate edge gradients**

time-resolved density profiles

Edge density gradient control: Boron dropper

§ powder injection modifies kinetic profiles (higher n & T gradients)

[R. Lunsford, C. Killer, et al., in preparation for]

- **DR measurements:** increased E_r and E_r shear, decreased \tilde{n}_e observed between pre- and post-injection phase in $ρ ~ 0.5-0.8$. [T. Estrada, D. Carralero, et al.]
- **EXTERG** in Z_{eff} may change n_i profiles due to plasma dilution, potentially reducing transport. **[See J.M. García-Regaña et al., 9-II-2021]**

- **•** in most scenarios **core fluctuations follow η**: ñ_e decreases (mostly) when a/L_n increases and saturates for η > 4.
- consistent with "stability valley" hypothesis. Comparison of DR data to simulations is complex.

- **•** in most scenarios **core fluctuations follow** η: ñ_e decreases (mostly) when a/L_n increases and saturates for η > 4.
- consistent with "stability valley" hypothesis. Comparison of DR data to simulations is complex.

- **•** in most scenarios **core fluctuations follow η**: ñ_e decreases (mostly) when a/L_n increases and saturates for η > 4.
- consistent with "stability valley" hypothesis. Comparison of DR data to simulations is complex
- for some discharges (low n_e ECRH), **fluctuations drop as** v_{ei} **falls** bellow certain value. TEM destabilization?

- **•** in most scenarios **core fluctuations follow η**: ñ_e decreases (mostly) when a/L_n increases and saturates for η > 4.
- consistent with "stability valley" hypothesis. Comparison of DR data to simulations is complex
- for some discharges (low n_e ECRH), fluctuations drop as v_{ei} falls bellow certain value. TEM destabilization?
- **drop in core fluctuations observed whenever T_i limit exceeded.** v_{ei} **suppression does not improve performance. ₂₆**

- our only systematic gradient control knob is ECH power deposition for T_e
- § increased **density gradients reduce measurements of density fluctuations** in different transient situations: high-performance pellets, NBI, massive LBO, boron dropper
- § **exceptions to the Ti limit correlate with reduced density fluctuations**
- reasonable agreement with simulations:
	- **E** qualititatively: **reduced** $\eta = (a/L_{\text{Ti}})/(a/L_{\text{n}})$ **leads to "stability valley"**
	- § nonlinear evolution: strongly reduced heat fluxes due to **reduced ITG and weak TEM activity**
- low collisionality appears to reduce fluctuations at $k_\perp \rho_i$ ~ 1. Transition to TEM-like turbulence?
- § **profile control can reduce density turbulence, which can be an indicator of reduced transport**
- § **care needs to be taken when interpreting measurements and simulations!**

Backup slides

Amplitude reduction: Simulations

Amplitude reduction: Simulations

Dashed lines represent the amplitude of fluctuations at the measurement position corresponding to the same discharge. Solid lines represent the amplitude of fluctuations at the measurement position *corresponding to the other discharge.*

Overview of the results: local/global transport

- **Fluctuations from high density shots** seem to relate to PB-obtained local heat fluxes in the expected way.
- Also seem to be related to τ_{E} , indicating a link between local core fluxes and global confinement.
- **Reduced fluctuations from low density** shots are not related to any changes in local/global transport.

Overview of the results: local/global transport

- **Fluctuations from high density shots** seem to relate to PB-obtained local heat fluxes in the expected way.
- Also seem to be related to τ_{E} , indicating a link between local core fluxes and global confinement.
- **Reduced fluctuations from low density** shots are not related to any changes in local/global transport.
- In **NBI shots**, fluctuations and τ_E also seem related, although with a different trend.

EUTERPE global linear simulations

Four experimental programs: post-pellet & gas fuelled / EJM & FTM, with $n_e \sim 9 \times 10^{19}$ m⁻² and PECH ~ 5.5 - 6.0 MW

Post-pellet: lower linear growth rates in FTM than in EJM configuration (in line with lower \tilde{n}_e measured in FTM than in EJM)

The differences are not directly linked to the magnetic configuration itself but rather to the differences in the plasma profiles with lower h **in FTM than in EJM**

T. Estrada, D. Carralero, T. Windisch et al., NF **61** (2021) *accepted*

Transport simulations

 $r/a = 0.51082$

 $r/a = 0.54357$

 $r/a = 0.60376$ $r/a = 0.63171$ $r/a = 0.65646$

2000

Average q_i as calculated by EUTERPE seems to be in the right order of magnitude.

The comparison between shots goes in the wrong direction for both codes!

The modification of a/L_n by impurities

• Considering a single impurity species, hydrogen as main species and electrons

$$
n_e\left(\frac{a}{L_{n_e}}\right) = n_i\left(\frac{a}{L_{n_i}}\right) + Zn_Z\left(\frac{a}{L_{n_Z}}\right)
$$

- Impurities can perturb appreciably the main ion density gradient, particularly those with low charge.
- The larger the impurity density gradient the stronger the decoupling of n'_i and n'_e .

José M. García-Regaña | Topical Group Turbulence | 14th January 2020 | Page 35

Q_i (a/L_{ni} \neq a/L_{ne}) in the approximation $n_z = 0$

• **The ion heat flux driven by an ITG can be practically suppressed** at sufficiently strong a/L_{n_i} with respect to its maximum value.

- In experiments:
- \circ The injection of impurities with TESPEL leads to increase of W_{dia} [Zhang EPS'19]
- o The *Boron dropper* experiments show plasma performance footprints after high Z_{eff} increase [Lunsford APS-DPP 2020]
- \circ ICRC conditions make a/L_{nz} to develop large values for Ar [Langenberg, Impurity TG 2020].

The role of T_e/T_i

