

Role of E_r on plasma turbulence (OP1 summary presentation)

Compiled by T. Estrada

Contributors: D. Carralero, C. Killer, A. Krämer-Flecken,

R. Lunsford, E. Maragkoudakis, N. Pablant, E. Sánchez,

A. von Stechow, J.L. Velasco, T. Windisch

Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

In stellarators the radial electric field profile is (mostly) determined by Neoclassical transport:

- Plasma kinetic profiles set the E_r profile, and they all impact the turbulence:
 - ✓ Profile shaping can reduce turbulence (adressed by A. von Stechow and D. Carralero)
 - ✓ E_r directly impacts turbulence in stellarators (not so in tokamaks)
 - \checkmark Strong E_r shear can stretch and break turbulent structures, reducing turbulence transport
- Turbulence itself can modify the average plasma flow by sheared zonal flow (ZF) generation, which reacts back on the turbulence and suppresses its own driver

To disentangle the impact of E_r and kinetic profiles on turbulence is not an easy task, neither in experiments nor in realistic simulations

Status of understanding after OP1

- E_r profile validation activities: cross-diagnostic & NC simulation comparison
- E_r-shear at the edge/SOL boundary:

impact on edge turbulence (impact on SOL transport \rightarrow adressed by C. Killer)

• E_r impact on core turbulence:

post-pellet enhanced confinement phase & impurity injection experiments

- E_r at the magnetic islands: impact on turbulence (next presentation)
- **Gyrokinetic simulations**: linear & non-linear results

Open questions and outlook towards OP2

- Non-linear global simulations
- New measurement capabilities for OP2

by the validation group: Windisch, Alonso, Buller, Carralero, Pablant, Smith

low density 4 10¹⁹ m⁻³

medium density 6 10¹⁹ m⁻³

high density 8 10¹⁹ m⁻³

by the validation group: Windisch, Alonso, Buller, Carralero, Pablant, Smith

180920009 t=<2.5-5>s LFS profile 25 20 15 10 ErNC [kV/m] -5 Doppler (X) -10XICS CXRS -15DKES -200.2 0.6 0.8 1.0 0.0 0.4 r/a

low density 4 10¹⁹ m⁻³

medium density 6 10¹⁹ m⁻³

high density 8 10¹⁹ m⁻³

DKES with momentum correction (mono-energetic collision operator) vs. SFINCS (full collision operator)

Ciemat Er profile validation: measurement vs. NC simulation (I)

Comparison of experimental profiles (DR) and neoclassical predictions obtained using the codes DKES and KNOSOS (J.L. Velasco) for the four most frequent magnetic configurations D. Carralero et al., NF **60**, 106019 (2020)

Comparison of experimental profiles (XICS and DR) and neoclassical predictions obtained using the code SFINCS R. Lunsford et al., PoP to be submitted

E_r profile validation: measurement vs. NC simulation (II)

Comparison of experimental (DR) and neoclassical predictions obtained using the codes DKES and KNOSOS (J.L. Velasco) for the four experimental programs T. Estrada et al., NF **61** (2021) accepted

Considering the diagnostic specific limitations, in general, a reasonable agreement is found when the experimental E_r profiles are compared with the neoclassical predictions

Status of understanding after OP1

- E_r profile validation activities: cross-diagnostic & NC simulation comparison
- E_r-shear at the edge/SOL boundary:

impact on edge turbulence (impact on SOL transport \rightarrow adressed by C. Killer)

• E_r impact on core turbulence:

post-pellet enhanced confinement phase & impurity injection experiments

• Gyrokinetic simulations: linear & non-linear results

Open questions and outlook towards OP2

- Non-linear global simulations
- New measurement capabilities for OP2

Ciemat E_r-shear at the edge/SOL boundary: impact on edge turbulence (PCR)

Impact of the edge E_r-shear on the fluctuations:

A. Krämer-Flecken et al., Plasma Sci. Technol. 22, 064004 (2020)

9

identified as a clear decrease in the broad band turbulence when passing the shear layer

the spectrum has a strong broad band component in the plasma edge (contributes with \approx 75 % to the spectra) but not in the shear layer (it reduces to \approx 20 %)

NBI induced E_r-shear reduction at the edge/SOL boundary

Ciemat E_r-shear at the edge/SOL boundary: impact on edge turbulence (DR)

Impact of the edge E_r**-shear on the fluctuations**: identified as a local minimum in the fluctuation profile nearby the LCFS

higher fluctuation level in the high mirror configuration as compared to the standard and high iota configurations

→ Impact on edge turbulent transport and plasma performance?

Status of understanding after OP1

- **E**_r **profile validation activities**: cross-diagnostic & NC simulation comparison
- E_r-shear at the edge/SOL boundary:

impact on edge turbulence (impact on SOL transport \rightarrow adressed by C. Killer)

• E_r impact on core turbulence:

post-pellet enhanced confinement phase & impurity injection experiments

• Gyrokinetic simulations: linear & non-linear results

Open questions and outlook towards OP2

- Non-linear global simulations
- New measurement capabilities for OP2

Ciemat E_r impact on core turbulence: post-pellet enhanced confinement phase

The density fluctuation level decreases during the post-pellet enhanced confinement phase (DR & PCI), in the range $\rho \approx 0.6$ -0.8, more pronounced in the high iota configuration than in the standard

A pronounced E_r-well is measured in the same radial range

DR measurements: T. Estrada et al., NF 61 (2021) accepted

Ciemat E_r impact on core turbulence: Boron powder injection experiments

Powder injection modifies kinetic profiles (higher n & T gradients)

DR measurements (T. Estrada): an increase in E_r and E_r-shear and a decrease in density fluctuations is observed between pre-injection (red) and post-injection (blue) phase, in $\rho \approx 0.5 - 0.8$

R. Lunsford, et al. PoP to be submitted

DR database provides general relationships between profiles, fluctuations and E_r (D. Carralero):

- in most scenarios core fluctuations follow η : \tilde{n}_e increases as η increases and saturates for $\eta > 4$
- A relation between the core fluctuations and the E_r-well depth is also observed

Status of understanding after OP1

- **E**_r **profile validation activities**: cross-diagnostic & NC simulation comparison
- E_r-shear at the edge/SOL boundary:

impact on edge turbulence (impact on SOL transport \rightarrow adressed by C. Killer)

• E_r impact on core turbulence:

post-pellet enhanced confinement phase & impurity injection experiments

• Gyrokinetic simulations: linear & non-linear results

Open questions and outlook towards OP2

- Non-linear global simulations
- New measurement capabilities for OP2

linear grwoth rate (s^{-1})

EUTERPE global linear simulations (I)

180918041 EJN

0.7

0

0.8

0.9

180911026 FTM

Four experimental programs: post-pellet & gas fuelled / EJM & FTM, with $n_{o} \sim 9 \times 10^{19} \text{ m}^{-2}$ and PECH ~ 5.5 - 6.0 MW

- adiabatic electrons ٠
- radial domain 0.65 0.75 ٠

Linear growth rates, γ , for the four experimental programs: in EJM (left, red) and in FTM (right, black), without and with E_r (open and solid symbols). In blue and green, γ obtained swapping the magnetic configurations F. Sánchez

0.6

Stabilizing effect of E, (and/or E,-shear):

T. Estrada et al., NF 61 (2021) accepted

- modest in the gas fuelled plasmas, but significant in the post-pellet plasmas
- larger in FTM (higher magnetic shear) than in EJM for the same profiles

Dominant role of E_r or E_r-shear?

Different E_r profiles are considered: E_r =0; no-shearing; constant E_r and experimental E_r to disentangle the effect of E_r and E_r -shear on the stabilization of ITG driven modes

E. Sánchez

Linear growth rates, γ , for #180918041, post-pellet phase in EJM configuration with different E_r profiles radial domain 0.65 – 0.75

GENE local full flux-surface non-linear simulations

Ambipolar E_r produces a displacement of the fluctuations on the magnetic surface towards regions with lower curvature less favorable for turbulence generation \rightarrow the nonlinear ion heat transport is reduced

Ciemat

P. Xanthopoulos et al., PRL 125, 075001 (2020)

Simulations at $\rho = 0.63$ with a/Ln = 0 & adiabatic electrons \rightarrow ITG turbulence

ion heat flux: an order of magnitude reduction with E_r It is not strong enough to compensate for the increase in ∇T (with $\nabla n = 0$)

Flux-tube simulations with kinetic electrons: strong a/Ln reduces ITG in favor of iTEM How E_r impacts the TEM / iTEM dominated turbulence?

GENE-3D: non-linear global simulations with adiabatic electrons (without E_r)

- Discrepancies between expectations based on **linear** simulations and the heat fluxes obtained in **non-linear** simulations have been found in W7-X configurations
- Radially local full flux-surface simulations overestimates (by a factor of two) the heat fluxes as compared to global simulations at the same position → global simulations are needed for quantitative studies

A. Bañón-Navarro et al. PPCF **62**, 105005 (2020)

Outlook towards OP2

Non-linear global simulations with kinetic electrons and E_r profiles...

impact of E_r and E_r -shear on zonal flow response & non-linear saturation of turbulence work is currently in progress using **GENE-3D** and **EUTERPE**... status?

Ciemat New measurement capabilities expected for OP2: PCI & Probes

Phase Contrast Imaging A. von Stechow, S. Hansen, J.P. Bähner

Modelling:

A synthetic diagnostic that predicts the PCI signal based on outputs form GENE3D and EUTERPE and additional E_r profiles

Measurement:

Radial resolution:

- originally planned for OP1 but didn't work due to technical reasons
- plans to implement it for OP2:

at least should be able to get an inboard/outboard selection but in the best case have a radial resolution on the outboard side of 0.2 r/a

Using 2 detectors:

allows to compare line-integrated fluctuations to those at a specific location (either fixed or scanned) allows to see the more-or-less local phase velocities and thereby E_r changes

Probes C. Killer

a new probe head with:

- a better poloidal resolution of probe pin
- a radial pin array

better insight into the complicated propagation of turbulent structures in the island divertor SOL

Ciemat New measurement capabilities expected for OP2: DR & probes

Doppler Reflectometry T. Windisch, D. Carralero, T. Estrada

V-band & W-band DR systems at AEA21:

upgrade the antenna systems incorporating steerable mirrors:

- probing different perpendicular wavenumbers of the turbulence to measure fluctuation wavenumber spectra
- investigate poloidal asymmetries of plasma flows and turbulence on flux surface

beam steering

Ciemat New measurement capabilities expected for OP2: DR & probes

Doppler Reflectometry T. Windisch, D. Carralero, T. Estrada, ...

V-band & W-band DR systems at AEA21:

upgrade the antenna systems incorporating steerable mirrors:

- probing different perpendicular wavenumbers of the turbulence to measure fluctuation wavenumber spectra
- investigate poloidal asymmetries of plasma flows and turbulence on flux surface

V-band DR system at AEK51:

poor performance during OP1.2 mainly due to a misalignment in the in-vessel optics upgrade the antenna system incorporating a steerable mirror:

- probing different perpendicular wavenumbers of the turbulence to measure fluctuation wavenumber spectra
- investigate poloidal/toroidal asymmetries of plasma flows and turbulence
- long distance correlation as a proxy for ZFs

New E-band DR system at AEA21:

• radial correlation measurements (eddy tilting) & E- shear

beam steering

AEK51

o=0.85