

Status Report for WPTE

Tokamak Exploitation Project Board – N03 Project Board | 14th March 2022

Marco Wischmeier, E. Joffrin, M. Baruzzo, A. Kappatou, D. Keeling, A. Hakola, B. Labit, E. Tsitrone, N. Vianello

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

1 – WP TE embedded in FSD with overarching priorities: ITER & DEMO & PEX

2 –Summary of Achievements ITER: Mission 1 RT02 Different Behavior at the Peeling Boundary

- Reference dataset (high v*):
 - decreasing p_e^{ped} with increasing n_e^{sep}
 - similar to AUG and JET [Dunne PPCF2017, Frassinetti NF2019]
- Iow v* dataset:
 - o increasing p_e^{ped} with increasing n_e^{sep} (especially at low- δ)
 - o consistent with DIII-D results [Snyder NF2015, Snyder NF2019]

EDA H-mode compatible with radiative scenario for detachment maintaining confinement
→ identified as proposed candidate of no ELM regimes to be tested on JET for 22/23

- N2 seeding reduces divertor Te and heat loads
- Approaching detachment while keeping stationary condition with no ELMs and high H₉₈
- Preliminary analysis of MEM suggest that QCM significantly enhance the radial particle transport across separatrix

letachment Snowflake with intrinsic impurities in L-mode

SN

(Single null)

TCV with baffles from PEX upgrade

SF-LFS

(Snowflake minus)

2 - Advances of subjective Readiness of Scientific objectives: Mission 1

Level		Emerging	Exploratory	Judgemental	Mature-ı underpii	needs nning	Mature-needs support		Established		
RT	Title				D1	D2	D3	D4	D5	D6	
RT01	IBL scena	rios towards low	collisionality and	detachment			Х				
RT02	H-mode entry and pedestal dependence with impurities and isotopes										
RT03	RF-assisted breakdown and current ramp-up optimization				x						
RT04	Disruption avoidance and control for ITER and DEMO										
RT05	Run-away electron generation and mitigation						Х	х			
RT06	ELM mitigation and suppression in ITER/DEMO relevant condition										
RT07	Negative triangularity scenarios as an alternative for DEMO					х					
RT08	QH-mode and I-mode assessment in view of DEMO			Х	X	X					
RT09	Extension of EDA and QCE performance towards DEMO						х				
RT10	Fast-ion physics with dominant ICRF heating										
RT11	Impact of MHD activity on fast ion losses and transport										Lack of power i
RT12	Developr	nent of the stead	y state scenario		Х					+	TCV and MAST-I

X – deliverables having advanced in readiness level

Level		Emerging	Exploratory	Jud	gemental Mature-n underpir		eds Matur ing su		re-needs oport	Established
	Title				D1	D2		D3	D4	D5
RT13	X-point radiation and control								х	
RT14	Physics of plasma detachment / impurity mix/ heat load patterns									
RT15	Extrapolation of SOL transport to ITER and DEMO								х	
RT16	PFC damage evolution under tokamak conditions									
RT17	7 Material migration and fuel retention mechanisms in tokamaks									
RT18	Alternat	ive divertor confi	gurations		х					

X – deliverables having advanced in readiness level

2 – WP TE successfully completed JET campaign C40B (TT) - C42 in progress

Technical issues (NBI & KL12 camera)

M18-01: Baseline scenario development for DT
M18-14: Isotope effects on L-H transition power threshold
M18-21: Confinement and transport in mixed isotope plasmas
M18-20: Dependence of pedestal structure on fuelling at constant beta
M18-19: Isotope effects on confinement and transport
M18-02: Hybrid scenario development for DT
M18-05 ICRH scenario support in D and T plasmas
M18-18: Determine the W source including ELM, RF and isotope effects
M18-24: Particle transport in pure and mixed isotopes
M18-29: Be erosion and migration to the divertor with isotopic effect
M18-39: Integrated high performance seeded scenario
M18-27: Isotope effects on detachment in L-mode
M18-15: Access to type-I ELMs with reduced torque
Calibration pulse of TIMs for DT analysis
M18-23: Rotation shear effect on ion transport with different isotopes
M18-17: Power width scaling and ELM losses at high current
M18-22: Electron and ion threshold and stiffness in pure and mixed isotopes
M18-50: NBI T power calibration
M18-26: Isotope effect on H-mode detachment and density limit
B18-08: Intrinsic rotation and momentum transport in pure and mixed isotope plasmas

Line average density (10¹⁹m⁻³) (E. Solano)

Completed
Scope changed and completed
Attempted but not completed
Not done

2 – WP TE successfully completed JET campaign C40B (TT) - C42 in progress

4s stationary high-delta plasma achieved at 2.5MA in C40b (TT), data obtained for SOLPS-ITER

Seeded study in C40a was impaired by ELM-free following LH-transition and rapid W accumulation (99259)

Demonstrated in C40b that T-gas rate needs to be at a minimum of 6.5x10²² el/s to obtain 4s ELMying plasma w/o excessive accumulation. (100244)

Good data obtained of target, SOL and pedestal for
SOLPS-ITER modelling.
→ Ukraine crisis risks SOLPS-ITER modelling: presently done by St. Petersburg group (agreement between ITER, JET, St. Petersburg)

GA Deliverable No.	Title	Due Date	Status	Details on Status (in case of delays or issues)
D01.01	Successful establishment of Type I ELMy H- mode scenario with dominant electron heating for the first safe operation of ITER.	31/12/2021	Delayed	From experiments in ASDEX Upgrade and TCV, achieving a dominant electron heating scenario has revealed challenging. In ASDEX Upgrade stability issue did not allow the achievement of a scenario at q95=3 with dominant electron heating due to MHD instabilities. In TCV this could not be tested yet because of the lack of electron heating from ECRH. Work continues to achieve the goals of the Grant Deliverable.
D01.02	The effect of total flux expansion and snowflake configurations in environments with intrinsic impurities on power dissipation quantified.	31/12/2021	Achieved	Approved in IDM

GA Milestone No.	Title	Due Date	Status	Details on Status (in case of delays or issues)
n/a				

1 – WP Organization: Changes foreseen for 2022/2023 programme (I): He

ITER

Scenario

Scenario

Exhaust

PFC

DEMO

Burning

plasma

PEX

2021 \rightarrow 1st half 2022

	Research Topics
RT1	ITER Baseline scenarios towards low collisinality and detachment
RT2	H-mode entry and pedestal dependence with impurities and isotopes
RT3	RF-assisted breakdown and current ramp-up optimization
RT4	Disruption avoidance and control for ITER and DEMO
RT5	Run-away electron generation and mitigation
RT6	ELM mitigation and suppression in ITER/DEMO relevant condition
RT7	Negative triangularity scenarios as an alternative for DEMO
RT8	QH-mode and I-mode assessment in view of DEMO
RT9	Extension of EDA and QCE performance towards DEMO
RT12	Development of the steady state scenario
RT10	Fast-ion physics with dominant ICRF heating
RT11	Impact of MHD activity on fast ion losses and transport
RT13	X-point radiation and control
RT14	Physics of plasma detachment / impurity mix/ heat load patterns
RT15	Extrapolation of SOL transport to ITER and DEMO
RT18	Alternative divertor configurations
RT16	PFC damage evolution under tokamak conditions
RT17	Material migration and fuel retention mechanisms in tokamaks

He Campaign on AUG and JET in 2022

	Research Topics
RT-He-01	ELMy H-mode operation in He in view of the non-active phase of ITER
RT-He-02	Qualifying transport in the core and edge of helium plasmas, in preparation of the non-active phase of ITER
RT-He-03	ELM control in helium H-modes for the non-active phase of ITER
RT05	Runaway electron generation and mitigation, and disruption mitigation in helium plasmas
RT06	ELM mitigation and suppression in ITER/DEMO relevant conditions in helium plasmas
RT-He-04	Helium plasmas for undestanding detachement physics
RT17	Fuel retention mechanisms in tokamaks in helium plasmas
RT-He-05	Assessing plasma wall interactions in He plasmas in view of the non-active phase of ITER
	RT-He-O1 RT-He-O2 RTO-F RTO5 RTO6 RT-He-O4 RT-He-O4 RT-He-O4 RT-He-O4 RT17 RT-He-O5

Extended (with existing SCs) and *new He RTs*

2 – WP Machine time allocation for AUG & JET He Campaign in pulses and sessions

RT	Name	AUG - pulses	JET - sessions
RT-He-01	ELMy H-mode operation in He in view of the non-active phase of ITER	15	22
RT-He-02	Qualifying transport in the core and edge of helium plasmas, in preparation of the non-active phase of ITER	12	10
RT-He-03	ELM control in helium H-modes for the non-active phase of ITER	0	6
RT-He-04	Helium plasmas for undestanding detachement physics	2	2
RT-He-05	Assessing plasma wall interactions in He plasmas in view of the non-active phase of ITER	14	18
RT05	Runaway electron generation and mitigation, including disruption mitigation in He plasmas	0	2
RT06	ELM mitigation and suppression in ITER/DEMO relevant conditions, <i>including RMP in He plasmas</i>	12	0
RT17	Material migration and fuel retention mechanisms in tokamaks, including fuel retention mechanisms in He plasmas	0	4
Contingency		0	16
TOTAL		55	80

JET: Nb of pulses per session depends on Ar frosting of cryo pump

2 – WP Main Objectives & Milestones (2022 & 2023 as one campaign)

WP TE Milestones 2022/2023

ID	Milestones Table	Date
TE.M.01	Completion of the disruption and run-away mitigation	Dec.
	experimental programme with the SPIs.	2022
TE.M.02	Access stable operation at low collisionality and high beta	Dec.
		2023
TE.M.03	JET scenarios ready for DTE3 operation	Dec.
		2023
TE.M.04	High performance reduced/no ELM scenario in a metallic wall	Dec.
	operated routinely	2023
TE.M.05	H-mode access for the ITER non-activated phase (H, He, H/D)	Dec.
	reliably established	2023

2 – WP Main Objectives & Milestones (2022 & 2023 as one campaign)

	W/D TE Grapt deliverable for 2022/2022					
TE.D.03	High fluence operation on actively cooled divertor at WEST	EST Dec. In cycle of call for proposal moved from mixe				
	assessed, and documented. (at risk due to WEST delays)	2022	approach for 2021/22:			
TE.D.04	Achievement of ELM control during the transient phases (I_p rampup and down, entering and exiting H-mode etc.) integrating ITER operational constraints.	Dec. 2022	 establishing priorities for the call & receiving proposals defining Research Topics and Deliverables as a 			
TE.D.05	The role of turbulent and MHD driven transport in the vicinity of the separatrix for the stability of the pedestal quantified and the implications for predictions for ITER and DEMO reported.	Dec. 2022	 result of the received proposals (Dec. 2020) 3) Extending 2021 programme into 1st half of 2022 			
TE.D.06	Achievement of state-observer based control of radiative detachment using multiple diagnostics.	Dec. 2023				
TE.D.07	The disruption and run-away electron mitigation efficiency by single and multiple shattered pellet injectors on different sized devices to validate the ITER Strategy assessed and documented.	Dec. 2023	 Prior to call for proposals: Definition of Research Topics 			
TE.D.08	Balance between gross and net erosion of W under different operational conditions in full-metallic toroidal devices	Dec. 2023	Definition of Scientific Objectives cross-checked against WP TE GD and MS (no DTE3 preparation)			
TE.D.09	Establishment and comparison of N and Ne-seeded partially- detached divertor in high-power operations in view of ITER radiative scenario.	Dec. 2023	Emphasizing integrative aspects (e.g. exhaust and control related objectives combined with ITER			
TE.D.10	The role of electron and ion heat channels and plasma rotation on	Dec.	and DEIVIO scenarios)			
	the access to H-mode for hydrogen, helium and mixed plasmas in view of the ITER non-active phase quantified.	2023	Proposals expected to implement the scientific			
TE.D.11	Incorporation of turbulence in multi-fluid calculations using physics-based diffusion coefficients (with TSVV4).	Dec. 2023	context & solicitate TSVValidation			

2 – WP Organization: Changes foreseen for 2022/2023 programme (II): D

Я.

Scenario

Scenario

Exhaust

PF

DEMO

Burning

plasma

X

2021 \rightarrow 1st half 2022

	Research Topics
RT1	ITER Baseline scenarios towards low collisinality and detachment
RT2	H-mode entry and pedestal dependence with impurities and isotopes
RT3	RF-assisted breakdown and current ramp-up optimization
RT4	Disruption avoidance and control for ITER and DEMO
RT5	Run-away electron generation and mitigation
RT6	ELM mitigation and suppression in ITER/DEMO relevant condition
RT7	Negative triangularity scenarios as an alternative for DEMO
RT8	QH-mode and I-mode assessment in view of DEMO
RT9	Extension of EDA and QCE performance towards DEMO
RT12	Development of the steady state scenario
RT10	Fast-ion physics with dominant ICRF heating
RT11	Impact of MHD activity on fast ion losses and transport
RT13	X-point radiation and control
RT14	Physics of plasma detachment / impurity mix/ heat load patterns
RT15	Extrapolation of SOL transport to ITER and DEMO
RT18	Alternative divertor configurations
RT16	PFC damage evolution under tokamak conditions
RT17	Material migration and fuel retention mechanisms in tokamaks

2nd half 2022 & 2023 **Research Topics** Core-Edge-SOL integrated H-mode scenario compatible RT1 with exhaust constraints in support of ITER RT3 Strategies for disruption and run-away mitigation in support of the ITER DMS Physics-based machine generic systems for an integrated RT4 control of plasma discharge Physics and operational basis for high beta long pulse RT8 scenarios RT2 Physics understanding of alternatives to Type-I ELM regime Physics understanding of energetics particles confinement RT9 and their interplay with thermal plasma Physics of divertor detachment and its control for ITER, RT5 **DEMO and HELIAS operation** RT7 Physics understanding of alternative divertor configurations as risk mitigation for DEMO Preparation of efficient Plasma Facing Components (PFC) RT6 operation for ITER, DEMO and HELIAS

2 – New WP Organization: To Facilitate physics and control integration of Prgramme

2 – WP Main Objectives & Milestones: Timeline for devices for 2022/2023 call for proposals

<u>JET</u>

- SPI commissioning mid July mid August 2022
- Commissioning of enhancement of HRTS
- Commissioning of enhanced passive spectroscopy for operation on tile 6

Key uncertainties:

- Existence of budget for operating JET beyond 09/2022
- Decision on DTE3 or TT or extension of programme foreseen in 22/23 beyond April 2023 until shutdown of JET

- Split 2022 budget in 45 ppy for 1st half of 2022 & 85 ppy for 2nd half of 2022 which inlcudes:
 - He campaigns AUG/JET (with analsis campaign period exceeds 2022 budget period)
 - D campaigns TCV, MAST-U, WEST, JET (campaign period exceeds 2022 budget period)
 - Analysis of 1st half of 2022 & 2021 campaign (analysis might exceed 2022 budget period)

2 – Resource distribution(2022)

Accepted ppds per Research Topic with highlighted beneficiary contribution

JET LIDS-QMS moving ahead if JET continues

AGHS pending as function of possible need in a possible DTE3 campaign end 2023 (UKAEA)

End 2021 PMU issued call for diagnostic enhancements:

- ASDEX Upgrade Design and implementation of a divertor Thomson Scattering system for the new upper divertor *approved*, *PMP tbd*
- WEST Design and implementation of a vertical endoscope for the fast IR camera approved, PMP tbd

3 – Risk & Mitigation Register: Current Status

Description of Risk	Severity	Likely hood	Proposed Mitigation Action	Risk materialized?	Mitigating Measures applied?	Comments
Non availability of one or several WP TE devices	Н	L	Reprioritization of device usage and amendment of the timeline of the experiment	WEST unavailable. TCV ECRH	Yes	WEST campaign shifted. RT01 experiment with ECRH have high priority in 2022 on TCV
Delay in the PEX Upgrades on the various devices	Н	М	Reprioritize PEX experiments and develop international collaboration	No		
SPI experiments are not conclusive in mitigating the disruption loads on tokamaks.	М	L	Find alternative mitigation solution to be developed on tokamaks	No		
Transferability of no/reduced ELM scenario to ITER and DEMO not feasible.	Н	L	Increase focus on JT-60SA and the importance of stellarator research	No		
Monitoring of the retention in metallic devices not sufficiently quantifiable	Н	М	Develop alternative monitoring methods	No		
JET DT campaign not or partially achieved in 2021	Н	М	Review JET extension objectives for DTE3	No		Analysis in Progress
Delay on real time diagnostics deployment for radiation control	М	М	Put more resources on real time control	No		
Fast ion losses found too high in high beta scenarios for viable fusion performance	Н	L	Expand the studies to JT-60SA	No		

Decisions on PCRs

PCR Number	PCR Title	PCR Status	Comments
01	Move delivery of GD TE.D.01 to 12/2022	NEW	GD delayed because of unavailability of ECRH X3 on TCV in 2021; now operational
02	Change in RT structure for He and DD campaigns	NEW	Originally foreseen as part of integration of JET after C42

- Lack of Grant deliverable for He campaign (other than L-H transition in He, considered low priority for ITER in He campaign TE.D.10) but defined as JET focus point in CWP (Table 3.2e)
- ✤ No Grant Deliverable in WP TE requires DTE3 (Milestone TE.M.03 exists)
- ✤ Discussion required inside FSD of specific content for fulfilment of Grant Deliverables → Review required (July 2022?) – e.g. TE.D.01 formulated generally, but delayed due to TCV X3 gyrotron, though TCV not explicitly mentioned but AUG and TCV implicitly intended
- ✤ TE.D.11: "Incorporation of turbulence in multi-fluid calculations using physics-based diffusion coefficients (with TSVV4)." → should be TSVV 3
- Need to undertake exercise of transferring subjective readiness level of scientific objectives to new RT structure

End of PB-Presentation slides

List of Deliverables of RTs with progress

RT	Deliverable	Description
01	D3	Optimize error field correction in MAST-U by using knowledge from other EU tokamaks (JET, AUG, COMPASS).
03	D1	Develop reliable ECRH and/or ICRH methods for RF assisted breakdown and produce prediction for ITER to determine the required RF power
05	D3	Develop and exploit measurement tools including (e.g., energy spectrum, density) for characterizing run-away electron beams
	D4	Test run-away electron mitigation with alternative methods (e.g., fueling pellets, MHD EC waves). D1. Develop reliable ECRH and/or ICRH methods for RF assisted breakdown and produce prediction for ITER to determine the required RF power
07	D3	Investigate power exhaust and detachment with simulations (2021) and in experiments in AUG and TCV (2022)
08	D1	Develop I-mode and QH-mode and determine existence space
	D2	Extend cross-machine scaling of PL-I threshold
	D3	Compatibility of QH-mode and I-mode with DEMO constraints (including dominant electron heating, low torque, high ne, sep, dissipative divertor)
09	D4	Identify the key parameters for a scaling of the heat loads in both regimes
12	D1	Develop an intrinsically steady state solution at high b _N (>3) in terms of q/pressure profile and stability. Compare it with other existing solutions in view of its application to JT-60SA and DEMO
13	D4	Demonstrate exhaust-compatible ramp-up/-down into detachment (including L-H transition) for at least one device
15	D4	Document associated turbulence properties near the X-point and in divertor region
18	D1	Characterize possible benefits of the snowflake configuration for X-point radiation stability and dissipated power

Level	
Emerging	Little or no understanding yet on WP TE devices
Evelopetow.	Physical process is assessed on WP TE devices,
Exploratory	transposing to ITER or DEMO is uncertain
Judgemental	Controlling physical processes has been assessed on WP TE devices, but extrapolation to ITER/DEMO requires scalable parameters and further investigation
	Good understanding of controlling physical processes
Mature – needs underpinning	on WP TE devices, but major uncertainty in view of
	transposing ITER/DEMO
	A good understanding has been achieved on WP TE
Mature – needs support	devices, further research exploring ITER or DEMO
	relevant parameters
Established	Understanding is well developed and can be applied to
ESTADIISHEU	ITER or DEMO