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Recent W7-X experiments showed significant differences with respect to 
tokamaks:

• Filaments bound to their flux surface [Killer, 2021]

• Fluctuations normally distributed (local origin)

Stellarator turbulence simulations still in its infancy:

• Gyrokinetic 𝛿f codes (GENE-3D, Stella, XGC-S, …) – study the core

• Fluid code BOUT++ simulated edge filaments in a rotating ellipse 
[Shanahan, 2019]

Introduction
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GBS solves the drift-reduced Braginskii equations
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 Set of equations for n, Te, Ti, V∥e, V∥i, 𝜔, ϕ

• Electrostatic simulations

• Boussinesq approximation

• No neutrals



GBS solves the drift-reduced Braginskii equations
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 Geometrical operators:
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GBS solves the drift-reduced Braginskii equations
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Stellarator with an island divertor
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 Dommaschk potentials [Dommaschk, CPC 1986] are a solution of 

Laplace’s equation in a torus:

R

𝑍
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We simulate a 5-field period stellarator…
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We simulate a 5-field period stellarator… with a 5/9 
chain of islands

 All rotational transform from rotation of the ellipses



GBS domain boundary intersects divertor islands
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GBS domain boundary intersects divertor islands
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Source for density and temperature localized around 
a magnetic surface
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 Simulation doesn’t strongly depend on the sources’ profile



Steady-state of simulation dominated by coherent 
mode
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density
density



Steady-state of simulation dominated by coherent 
mode
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 An m=4 mode dominates the global dynamics 

 Mode rotates with ~ ion diamagnetic frequency

 No broad-band turbulence

 Radial turbulent transport due to <  ΓExB >𝑡 =<  𝑛  𝑉ExB >𝑡 balances source

density
density



Mode is field-aligned
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Equilibrium profiles
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density potential



Effectiveness of the island divertor
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 On the TOP of the simulation box, pressure is maximum where field lines strike:



Asymmetry of ExB-flux between HFS/LFS
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<  ΓrExB >𝑡 =<  𝑛 𝑉
𝑟
ExB >𝑡



Asymmetry of ExB-flux between HFS/LFS
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𝐇𝐅𝐒



Understand the mode with non-local linear theory
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 Linearize GBS equations by assuming quantities vary as:

𝐧 = 𝟓

𝒎 = 𝟒

GBS simulation
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Linear theory predicts the observed mode
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GBS simulationLinear theory



Is the linear mode able to transport the same 𝚪𝐄𝐱𝐁?
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Our mode!

Linear mode is able to transport the same 𝚪𝐄𝐱𝐁
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Nature of the linear mode: balloning
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r
No drift-waves drive
(𝛁∥𝒑𝒆 = 𝟎 in 𝑽∥𝒆 eq.)

No ballooning drive
(curvature(p)=0 in vorticity eq.)



Conclusions

24

 First global fluid simulations of a stellarator have been performed with GBS code

 Unlike tokamak experiments/simulations, no broad-band turbulence nor blobs were 
observed. Instead, a low poloidal mode (m=4) dominates transport

 Linear theory points to ballooning mode

 Is this coherent mode a property of the configuration used? 



Technical difficulties
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 Number of grid points in toroidal direction (Nphi=200) -> dt ~ 3e-6

 Broad parameter space in the magnetic field configuration 

 Difficult to predict what happens in the stochastic region. Regions of very small 
connection length. Density may decrease quickly

 Boundary conditions. Difficult to run with magnetic BC on density and vorticity. Instead:

𝜕𝑠𝑛 = 0 and 𝜔 = 0


