

Enivsaged X3-scenario in OP2.1 and its startup commissioning

Torsten Stange on behalf of the W7-X team

- **1. Motivation: Why third harmonic X-mode heating (X3)?**
- **2. Heating scenarios using X3**
- **3. Startup Scenarios for X3-operation**
- **4. Proposal for first startup tests**
- **5. Summary & Outlook**

1. Motivation

- Lower field allows probably higher beta (even though τ_{F} is reduced) is reduced) *… see talk by G. Fuchert @ X3-Workshop 03/2021*
- \Rightarrow Investigation of scaling laws in dependence on B (τ_E, radiative density limit, transport coefficients χ ...)
- Several magnetic configurations (e.g. low-iota very high mirror UFM) maybe possible @ $B_{axis,0^{\circ}}$ < 2 T
- \Rightarrow Predicted unstable against e.g. global free-boundary perturbations, allowing investigation + understanding of MHD stability … *see related talks by C. Nührenberg*
- Interesting ECRH physics + further validation of TRAVIS-code (even though X3-heating is already used at TCV)

Operation regimes at W7-X with 140 GHz - ECRH around 2.5T:

- X2-heating 10^{19} m⁻³ < n_e $\leq 10^{20}$ m⁻³, T_e > 0.2 keV
- O2-heating $5 \cdot 10^{19}$ m⁻³ < n_e ≤ 1.8 $\cdot 10^{20}$ m⁻³, T_e ≥ 3 keV (cutoff @ 2.4∙10²⁰ m-3 but refraction and reduction of absorption)

Further operation regime with 140 GHz around 1.7 T

• X3-heating $n_e \leq 1.2 \cdot 10^{20}$ m⁻³ with similar behavior as O2-heating (cutoff @ 1.6∙10²⁰ m-3 but refraction difficult to handle)

2. Heating scenarios: ECRH-system

2. Heating scenarios: comparison of O2- & X3-absorption

- X3-absorption with similar characteristics compared to O2-absorption (with regard to n_e and T_e scales with nT²)
- \Rightarrow Use of multipass scenario (for several seconds with central temperatures of the order $T_e \geq 3$ keV)
- \Rightarrow Plasma startup only possible by other heating scenario (in case of O2-heating by switch from X2 to O2 during the discharge) *… detailed discussion later in the talk*
- Different angle dependence of absorption + X-mode polarized beam undergoes much stronger refraction
- \Rightarrow Same multipass scenario only useable for low densities around 3 7 ⋅10¹⁹ m⁻³

2. Heating scenarios: comparison of O2- & X3-refraction …

- O2-heating scenario was redesigned for OP2 to reduce stray radiation by about 50%
- \Rightarrow Higher incidence angles with regard to plasma for better absorption + polarization gratings for 2nd pass matching

IPP

• X3-heating with $n_e > 8 \cdot 10^{19}$ m⁻³ and fast density variation: 2nd pass can enter into the other ECRH-launcher

2. Heating scenarios: X3 at low density

- \Rightarrow Multipass via O2-tiles only useable for low densities up to 7 \cdot 10¹⁹ m⁻³
- \Rightarrow However, these tiles allow cw operation and polarization matching of 2nd pass and

2. Heating scenarios: X3 at high density

- broad area of heat shield opposite to ECRH -Launchers is W -coated in OP2 (green)
- same low absorption of direct ECRH -beam compared to dedicated reflector -tiles
- \Rightarrow possibility to use W-coated graphite tiles for several seconds as non -optimized reflector during X3 (take care of arcing)

TZM -reflector tile dedicated to O2 (also W-coated)

Red dots: perpendicular incidence during X2 Blue dots: possible reflectors for high density X3

T. Stange et al

2. Heating scenarios: X3 at $n_{e,0} = 10^{20}$ **m⁻³**

- single pass absorption of the order 80%
- \Rightarrow more relaxed conditions for reflector tiles
- \Rightarrow at least 95% absorption with future optimized tiles
- power deposition control by variation of setpoint $B_{axis,0°}$ without noteworthy reduction of absorption
- up to now: density limit set to $n_e \leq 1.2 \cdot 10^{20}$ m⁻³ (after further optimization hopefully slightly more)

reff/a=1.0 - fluxsurface

central rays of 3 passes of the 6 ECRH-beams in module 1

3. Startup scenarios – ICRH + NBI @ Baxis,0° > 1.76 T

- simulations for NBI-startup (by D. Gradic) with NBI-power of 3.4 MW (55 kV acceleration) and $T_e > 15$ eV
- \Rightarrow Use of helium (lower ionization energy) seems to be beneficial to broaden the window of optimal neutral gas pressure
- \Rightarrow n_e > 10¹⁷ m⁻³ enough for increasing T_e > 1 keV within 1-2s
- Takeover by 140 GHz $-$ gyrotrons after 1 3 seconds

Figure 9. Plasma start-up time (criterion: $T_c > 15 \text{ eV}$) in a pure hydrogen gas target and in helium-hydrogen admixtures for different neutral gas pressures p_{gas} .

Figure 10. Start-up time (criterion: $T_e > 15 \text{ eV}$) in dependence on he initial electron density, $n_{e,0}$, (the initial ion density was set equal o the electron density). The vertical lines indicate the initial neutral zas density during the simulation.

T. Stange et al ECRH with X3 at W7-X 10

3. Startup scenarios – ICRH only @ Baxis,0° > 1.76 T

- Even though absorption \mathcal{Q} T_e < 100eV is tiny a direct takeover should be tested \mathcal{Q} maximum possible T_e
- use of helium or argon probably is beneficial, too
- Takeover by 140 GHz gyrotrons after <1 seconds *(dependent on maximum T^e)*

3. Startup scenarios – Experience with ICRH breakdown

• Theoretical studies and several experiments conducted by V. Moiseenko + Collaborators

10

 cm^3 6

 \overline{N}_{e} , 10¹² c

 $\overline{2}$

- \Rightarrow Hydrogen minority heating
	- *… here only short teaser to following talk by V. Moiseenko*

Experiments at Uragan 2-M

- Experiments with different gas mixtures show maximum achievable density for 14% H_2 + 86% He
- Neutral gas pressure can be $< 10e^{-4}$ mbar

Experiments at LHD (similar volume as W7-X)

- similar gas mixture with 19% H_2 + 81% He
- Breakdown with < 5 10⁻⁷mbar and increase to sufficient densites < 0.5 s
- Achieved density 10^{18} m⁻³ with 200 kW ω final pressure $< 10^{-7}$ mbar
- \Rightarrow Startup time by NBI to 15 eV < 0.1s
- \Rightarrow Overall time to 1keV assumed to be \lt 0.5s

 10^{-3}

[Kovtun, Moiseenko et al, ITC30]

26%H₂+74%He

• 14%H₂+86%He

▲ 7%H₂+93%He

* 4%H₂+96%He

 10^{-2}

p, Pa

Figure 4. Time evolutions of ICRF power P_{ICRF} , (antennas FAIT U and L), maximum voltage at the coaxial line V_{max} , loading resistances (including vacuum loading resistance) R , average electron density \overline{n}_e , optical emission intensities of H_{α} (656.3 nm), HeI (587.6 nm), HeII (468.6 nm), CIII (97.7 nm), OV (63 nm) and OVI (103.4 nm), and neutral gas pressure p. Working gas content is \sim 81% He + 19% H₂.

[S. Kamio et al 2021 Nucl. Fusion 61 114004]

4. Strategy - commissioning phase

- ICRH project team presented commissioning plan of ICRH-system *… see talk by D. Hartmann 25/01/2022*
- First ICRH breakdown tests in session 5 @ 2.5 T with 38 MHz *(resonance layer at same position as for 1.8 T)*
- \Rightarrow can be supported by ECRH-target plasma (X2)
- \Rightarrow ECRH cleaning discharge afterwards to quarantee same conditions for next breakdown test *(within the same experiment program!)*
- \Rightarrow combination with takeover by NBI *(Later tests with direct takeover by X3 only reasonable, if the optimum parameters with maximum T^e are found in session 5! Therefore, takeover by NBI not too early!)*
- Ideally, first try in session 7 with 25 MHz @ 1.8 T leads to same results
- Search for absorption scheme in hydrogen only should be first tried with 38 MHz @ 2.5 T, too! *(ECRH cleaning pulses available)*

4. Strategy – commissioning phase – session 5

Assumption: minority heating works (session 2+3) and antenna gas inlet works (session 4)

- Goal: ICRH breakdown scenario with $n_e > 10^{17} - 10^{18}$ m⁻³
	- use of minimum gas inlet and/or maximum hydrogen content to allow a fast gas exchange to hydrogen in the later NBI + X3-phase
	- demonstrate usability without ECRH cleaning discharge afterwards
- \Rightarrow All experiment programs with 2 MW ECRH discharge (length $>$ 3s) or pulse series afterwards (interval between ECRH pulses 30s)
- 1. Establish scenario similar to LHD with pulses up to 1s by use of main gas inlet (≈ 80% He + 20% H₂, vary initial gas pressure between 5·10⁻⁷ mbar to 10⁻⁸ mbar)
- 2. If in step 1 not already done, try to realize breakdown with antenna gas inlet (needs eventually less gas volume compared to main gas inlet system)
- 3. Combine optimal ICRH discharge (about 0.5s) with 2 NBI sources for 250 ms (technical maximum without absorption – interlock must be prevented!, no overlap of ICRH & NBI due to disturbance of ICRH coupling by NBI)
- 4. If success, repeat with only 1 NBI source and without ECRH afterwards
- 5. Repeat step 4 to demonstrate reliable operation

Figure 4. Time evolutions of ICRF power P_{ICRF} , (antennas FAIT U and L), maximum voltage at the coaxial line V_{max} , loading resistances (including vacuum loading resistance) R , average electron density \overline{n}_e , optical emission intensities of H_o (656.3 nm), HeI (587.6 nm), HeII (468.6 nm), CIII (97.7 nm), OV (63 nm) and OVI (103.4 nm), and neutral gas pressure p. Working gas content is \sim 81% He + 19% H₂.

… details on ICRH parameters planned by V. Moiseenko + ICRH-team

4. Strategy – commissioning of ICRH+NBI+X3

Assumption: startup scenario with NBI works @ 2.5 T

- Goal: • Repeat/demonstrate the 2.5T ICRH+NBI scenario @ 1.8T with 25 MHz
	- demonstrate takeover of ICRH+NBI by ECRH with X3 multipass scenario
	- Eventually test of direct takeover of ICRH plasma by X3
- 1. ICRH breakdown without NBI
- 2. ICRH+NBI
- 3. ICRH+NBI + takeover by X3 (100ms) with 6 beams which are not affected by refraction
- 4. With knowledge of density repeat point 3 with all beams for > 0.5s in different combinations
- 5. Eventually test direct X3-takeover with all ECRH-beams (technical limit 50ms without ECRH absorption)
- 6. At session end further adjust parameters of ICRH and NBI with safe X3-scenario (session finished anyway if wall conditions become too bad)

Should be tested as early as possible to identify unexpected problems (e.g. control systems, interlocks etc.)

Shall give a feeling of necessary X3-Scenario "commissioning" and goes far beyond the commissioning of ICRH breakdown

5. Summary & Outlook

- X3-operation with similar absorption and conditions as O2-heating (85% to 95% for $T_a > 3$ keV) \Rightarrow all O2-reflector tiles usable up to 7 ⋅10¹⁹ m⁻³
- \Rightarrow for 7 12 ⋅10¹⁹ m⁻³ partly use of W-coated graphite tiles as reflector for shinethrough power of up to 200kW (time limitation of the order seconds and slight tile damage by arcing at the tile screws)
- \Rightarrow after this high density tests further upgrade by TZM-reflector tiles optimized for X3-operation (maybe densities up to $1.4 \cdot 10^{20}$ m⁻³ possible)
- ICRH+NBI+X3 most probable candidate for first tests/operation of X3-heating scenario (however, nothing is guaranteed)