

Enivsaged X3-scenario in OP2.1 and its startup commissioning

Torsten Stange on behalf of the W7-X team

- 1. Motivation: Why third harmonic X-mode heating (X3)?
- 2. Heating scenarios using X3
- 3. Startup Scenarios for X3-operation
- 4. Proposal for first startup tests
- 5. Summary & Outlook

1. Motivation

- Lower field allows probably higher beta (even though τ_E is reduced) ... see talk by G. Fuchert @ X3-Workshop 03/2021
- \Rightarrow Investigation of scaling laws in dependence on B (τ_E , radiative density limit, transport coefficients χ ...)
- Several magnetic configurations (e.g. low-iota very high mirror UFM) maybe possible @ B_{axis,0°} < 2 T
- \Rightarrow Predicted unstable against e.g. global free-boundary perturbations, allowing investigation + understanding of MHD stability
- Interesting ECRH physics + further validation of TRAVIS-code (even though X3-heating is already used at TCV)

Operation regimes at W7-X with 140 GHz - ECRH around 2.5T:

- X2-heating $10^{19} \text{ m}^{-3} < n_e \le 10^{20} \text{ m}^{-3}$, $T_e > 0.2 \text{ keV}$
- O2-heating $5 \cdot 10^{19} \text{ m}^{-3} < n_e \le 1.8 \cdot 10^{20} \text{ m}^{-3}$, $T_e \ge 3 \text{ keV}$ (cutoff @ 2.4 \cdot 10^{20} m^{-3} but refraction and reduction of absorption)

Further operation regime with 140 GHz around 1.7 T

 X3-heating n_e ≤ 1.2·10²⁰ m⁻³ with similar behavior as O2-heating (cutoff @ 1.6·10²⁰ m⁻³ but refraction difficult to handle) ... see related talks by C. Nührenberg

2. Heating scenarios: ECRH-system

2. Heating scenarios: comparison of O2- & X3-absorption

- X3-absorption with similar characteristics compared to O2-absorption (with regard to n_e and T_e scales with nT²)
- \Rightarrow Use of multipass scenario (for several seconds with central temperatures of the order T_e \ge 3 keV)
- ⇒ Plasma startup only possible by other heating scenario
 (in case of O2-heating by switch from X2 to O2 during the discharge)
 ... detailed discussion later in the talk
- Different angle dependence of absorption + X-mode polarized beam undergoes much stronger refraction
- \Rightarrow Same multipass scenario only useable for low densities around 3 7 $\cdot 10^{19}$ m⁻³

2. Heating scenarios: comparison of O2- & X3-refraction ...

- O2-heating scenario was redesigned for OP2 to reduce stray radiation by about 50%
- \Rightarrow Higher incidence angles with regard to plasma for better absorption + polarization gratings for 2nd pass matching

Pμ

• X3-heating with $n_e > 8 \cdot 10^{19} \text{ m}^{-3}$ and fast density variation: 2^{nd} pass can enter into the other ECRH-launcher

2. Heating scenarios: X3 at low density

- \Rightarrow Multipass via O2-tiles only useable for low densities up to 7 $\cdot 10^{19}$ m⁻³
- \Rightarrow However, these tiles allow cw operation and polarization matching of 2nd pass and

2. Heating scenarios: X3 at high density

- broad area of heat shield opposite to ECRH-Launchers is W-coated in OP2 (green)
- same low absorption of direct ECRH-beam compared to dedicated reflector-tiles
- ⇒ possibility to use W-coated graphite tiles for several seconds as non-optimized reflector during X3 (take care of arcing)

TZM-reflector tile dedicated to O2 (also W-coated)

Red dots: perpendicular incidence during X2 **Blue dots:** possible reflectors for high density X3

T. Stange et al

2. Heating scenarios: X3 at $n_{e,0} = 10^{20} \text{ m}^{-3}$

- single pass absorption of the order 80%
- \Rightarrow more relaxed conditions for reflector tiles
- \Rightarrow at least 95% absorption with future optimized tiles
- power deposition control by variation of setpoint B_{axis,0°} without noteworthy reduction of absorption
- up to now: density limit set to n_e ≤ 1.2·10²⁰ m⁻³ (after further optimization hopefully slightly more)

r_{eff}/a=1.0 - fluxsurface

central rays of 3 passes of the 6 ECRH-beams in module 1

3. Startup scenarios – ICRH + NBI @ $B_{axis,0^{\circ}} > 1.76 T$

- simulations for NBI-startup (by D. Gradic) with NBI-power of 3.4 MW (55 kV acceleration) and $T_e > 15 eV$
- ⇒ Use of helium (lower ionization energy) seems to be beneficial to broaden the window of optimal neutral gas pressure
- \Rightarrow n_e > 10¹⁷ m⁻³ enough for increasing T_e > 1 keV within 1-2s
- Takeover by 140 GHz gyrotrons after 1 3 seconds

Figure 9. Plasma start-up time (criterion: $T_c > 15 \text{ eV}$) in a pure hydrogen gas target and in helium–hydrogen admixtures for different neutral gas pressures p_{gas} .

Figure 10. Start-up time (criterion: $T_e > 15 \text{ eV}$) in dependence on he initial electron density, $n_{e,0}$, (the initial ion density was set equal o the electron density). The vertical lines indicate the initial neutral gas density during the simulation.

3. Startup scenarios – ICRH only @ $B_{axis,0^{\circ}} > 1.76 T$

- Even though absorption @ T_e < 100eV is tiny a direct takeover should be tested @ maximum possible T_e
- use of helium or argon probably is beneficial, too
- Takeover by 140 GHz gyrotrons after <1 seconds (dependent on maximum T_e)

3. Startup scenarios – Experience with ICRH breakdown

Theoretical studies and several experiments conducted by V. Moiseenko + Collaborators

10

6

cm^{.3}

N_e,10¹² c

- \Rightarrow Hydrogen minority heating
 - ... here only short teaser to following talk by V. Moiseenko

Experiments at Uragan 2-M

- Experiments with different gas mixtures show maximum achievable density for 14% H_2 + 86% He
- Neutral gas pressure can be $< 10e^{-4}$ mbar

Experiments at LHD (similar volume as W7-X)

- similar gas mixture with 19% H_2 + 81% He
- Breakdown with $< 5 \ 10^{-7}$ mbar and increase to sufficient densites < 0.5 s
- Achieved density 10¹⁸ m⁻³ with 200 kW @ final pressure < 10⁻⁷ mbar
- \Rightarrow Startup time by NBI to 15 eV < 0.1s
- \Rightarrow Overall time to 1keV assumed to be < 0.5s

10-3

[Kovtun, Moiseenko et al, ITC30]

26%H_+74%He

14%H_+86%He

7%H,+93%He

10⁻²

p, Pa

4%H₂+96%He

Figure 4. Time evolutions of ICRF power P_{ICRF} , (antennas FAIT U and L), maximum voltage at the coaxial line V_{max} , loading resistances (including vacuum loading resistance) R, average electron density \overline{n}_{e} , optical emission intensities of H_o (656.3 nm), HeI (587.6 nm), HeII (468.6 nm), CIII (97.7 nm), OV (63 nm) and OVI (103.4 nm), and neutral gas pressure p. Working gas content is $\sim 81\%$ He + 19% H₂.

[S. Kamio et al 2021]

4. Strategy - commissioning phase

- ICRH project team presented commissioning plan of ICRH-system
- First ICRH breakdown tests in session 5 @ (resonance layer at same position as for 1.8 T)
- \Rightarrow can be supported by ECRH-target plasma ()
- \Rightarrow ECRH cleaning discharge afterwards to gua same conditions for next breakdown test (within the same experiment program!)
- \Rightarrow combination with takeover by NBI (Later tests with direct takeover by X3) only reasonable, if the optimum parameters with maximum T_{ρ} are found in session 5! Therefore, takeover by NBI not too early!)
- Ideally, first try in session 7 with 25 MHz @ 1.8 T leads to same results
- Search for absorption scheme in hydrogen only should be first tried with 38 MHz @ 2.5 T, too! (ECRH cleaning pulses available)

	g plan or i				and by	D. mart		1,2022		
@ 2.5 T with 38 MHz) a (X2) guarantee				Power [MW] ICRH ² (500kW)		X2 pulse afterwards or even pulse series 140GHz ECRH				time
Extract of		ICRH comm	,	0-	0	10	20	30	[s]	
		ICRH System Modification	Mgn. Conf.	B36 [T]	Freq [MHz]	Phasing	working gas	Absorption	max. RF power [kW]	target plasma
1 antenna position			std.	2,5	38	pi He		He (H)	0 ECRH	
2 pla	sma operation		std.	2,5	38	p	i He	He (H)	500	ECRH
ant 3 ope	enna position and eration		high mirror	2,5	38	p	i He	He (H)	500	ECRH
5 plasma startup			tbd. but known	2,5	38		iHe	He (H)	500	ECRH
		pi phasing, 25 MHz			25					
6 plasma operation tbd, but ki		tbd, but known	2,5	25	р	iHe	none	100	ECRH	
7 plasma startup			tbd, but known	1,8	25	pi He		He (H)	500 none	
8 pla	sma startup		tbd, but known	1,8	25	р	Hydrogen	none	100	none
		0 phasing, 25 MHz								
9 plasma startup 10 plasma startup		tbd, but known tbd, but known	1,8 1.8	25	C) Hydrogen	He (H) none	500 100	none none	

see talk by D Hartmann 25/01/2022

4. Strategy – commissioning phase – session 5

Assumption: minority heating works (session 2+3) and antenna gas inlet works (session 4)

- Goal: ICRH breakdown scenario with $n_e > 10^{17} 10^{18} \text{ m}^{-3}$
 - use of minimum gas inlet and/or maximum hydrogen content to allow a fast gas exchange to hydrogen in the later NBI + X3-phase
 - demonstrate usability without ECRH cleaning discharge afterwards
- ⇒ All experiment programs with 2 MW ECRH discharge (length > 3s) or pulse series afterwards (interval between ECRH pulses 30s)
- Establish scenario similar to LHD with pulses up to 1s by use of main gas inlet (≈ 80% He + 20% H₂, vary initial gas pressure between 5.10⁻⁷ mbar to 10⁻⁸ mbar)
- 2. If in step 1 not already done, try to realize breakdown with antenna gas inlet (needs eventually less gas volume compared to main gas inlet system)
- 3. Combine optimal ICRH discharge (about 0.5s) with 2 NBI sources for 250 ms (technical maximum without absorption – interlock must be prevented!, no overlap of ICRH & NBI due to disturbance of ICRH coupling by NBI)
- 4. If success, repeat with only 1 NBI source and without ECRH afterwards
- 5. Repeat step 4 to demonstrate reliable operation

Figure 4. Time evolutions of ICRF power P_{ICRF} , (antennas FAIT U and L), maximum voltage at the coaxial line V_{max} , loading resistances (including vacuum loading resistance) *R*, average electron density \overline{n}_{e} , optical emission intensities of H_{α} (656.3 nm), HeI (587.6 nm), HeII (468.6 nm), CIII (97.7 nm), OV (63 nm) and OVI (103.4 nm), and neutral gas pressure *p*. Working gas content is ~81% He + 19% H₂.

... details on ICRH parameters planned by V. Moiseenko + ICRH-team

4. Strategy – commissioning of ICRH+NBI+X3

Assumption: startup scenario with NBI works @ 2.5 T

- Goal: Repeat/demonstrate the 2.5T ICRH+NBI scenario @ 1.8T with 25 MHz
 - demonstrate takeover of ICRH+NBI by ECRH with X3 multipass scenario
 - Eventually test of direct takeover of ICRH plasma by X3
- 1. ICRH breakdown without NBI
- 2. ICRH+NBI
- 3. ICRH+NBI + takeover by X3 (100ms) with 6 beams which are not affected by refraction
- 4. With knowledge of density repeat point 3 with all beams for > 0.5s in different combinations
- 5. Eventually test direct X3-takeover with all ECRH-beams (technical limit 50ms without ECRH absorption)
- At session end further adjust parameters of ICRH and NBI with safe X3-scenario (session finished anyway if wall conditions become too bad)

Should be tested as early as possible to identify unexpected problems (e.g. control systems, interlocks etc.)

Shall give a feeling of necessary X3-Scenario "commissioning" and goes far beyond the commissioning of ICRH breakdown

5. Summary & Outlook

- X3-operation with similar absorption and conditions as O2-heating (85% to 95% for $T_e > 3$ keV) \Rightarrow all O2-reflector tiles usable up to 7 $\cdot 10^{19}$ m⁻³
- \Rightarrow for 7 12 \cdot 10¹⁹ m⁻³ partly use of W-coated graphite tiles as reflector for shinethrough power of up to 200kW (time limitation of the order seconds and slight tile damage by arcing at the tile screws)
- \Rightarrow after this high density tests further upgrade by TZM-reflector tiles optimized for X3-operation (maybe densities up to 1.4 \cdot 10²⁰ m⁻³ possible)
- ICRH+NBI+X3 most probable candidate for first tests/operation of X3-heating scenario (however, nothing is guaranteed)