

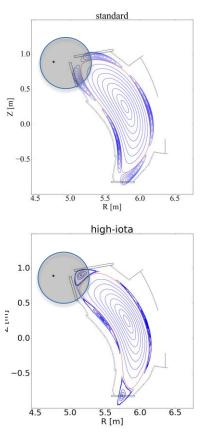
Wendelstein 7-X: Proposal for Operational Phase 2 "He exhaust at Wendelstein 7-X (from the island divertor and sub-divertor volume perspective)"

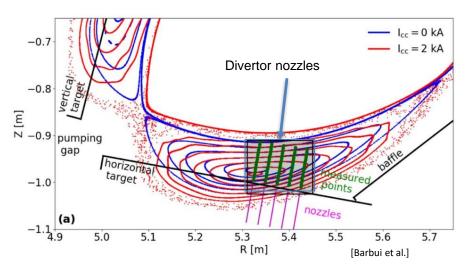
Stepan Sereda¹, D. Boeyaert¹, O. Schmitz¹, J. Hoffman¹,

1 - University of Wisconsin - Madison, Department of Engineering Physics, Madison, WI, USA

Proposal

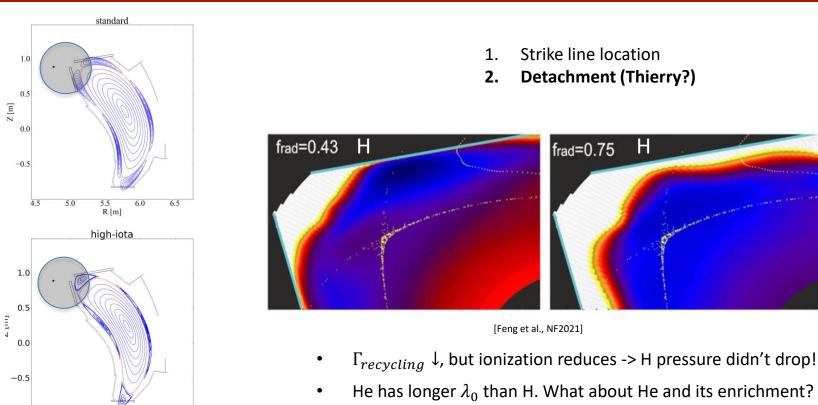
- 1. He removal and enrichment (maximization) Questions to answer:
 - 1. τα*/τE < 10?
 - 2. How can we decrease $\tau \alpha^*$, study it properly?
 - 3. How can we increase the pumping gap neutral pressure (and later also further to the pumps)?
 - 4. Can we de-couple He from H (T) exhaust He enrichment?
 - 5. Is He retention good enough for the IRC vs ERC regimes?
- 2. Knobs
 - 1. Strike-line location ($I_{cc} = [0..2]$ kA)
 - 2. Island size (correct its position) (-> optimum λ_0 for He -> EMC3-EIRENE)
 - 3. Magnetic configuration: standard vs high/low-i islands connection
 - 4. Density scan
 - 5. Power scan
 - 6. Different puffing locations
- 3. Metrics
 - 1. Puff/pump studies
 - 2. He-NBI/pump studies
 - 3. $\eta_{gap/div}^{enrich}$
 - 4. $P_{He}(t), P_{H2}(t)$
 - 5. τ_{He}, τ_{H2}
 - 6. Hel, H balmer lines
 - 7. He, H densities
- 4. Attachment -> Detachment: pressure stays constant (should drop) done for H. But what about He?
- 5. Non-resonant configuration (Geiger + Schmitz + Garcia)
- 6. Influence of He on neutral conductance by Dieter
- 7. Cryo pumps will increase H_2 pumping => He enrichment? + Possibly Ar frosting.


Characteristic parameters



Neutral pressure at the island divertor

- 1. Strike line location
- 2. Detachment (Thierry?)



- Sensitive to plasma current and can be tuned by the Control Coils (I_{cc})
- Change recycling position

Neutral pressure at the island divertor

College of Engineering

λ₀ (cm)

15

12

9

6

3

4.5

5.0

5.5 R [m] 6.0

6.5

Q&A

