

Wendelstein 7-X: Proposal for Operational Phase 2 "He exhaust at Wendelstein 7-X (from the island divertor and sub-divertor volume perspective)"

Stepan Sereda¹, D. Boeyaert¹, O. Schmitz¹, J. Hoffman¹,

1 - University of Wisconsin - Madison, Department of Engineering Physics, Madison, WI, USA

Objectives

- 1. Obtain needed experimental data
- 2. Questions:

He removal							
	How can we increase the divertor n	eutral pressure?					
	 Strike line/I_{cc} scan 						
	 Configuration scan 						
	 Density scan 						
What are our effective pumping speeds for He?			Dieter for i	Dieter for neutral conductunces			
How can we in	crease the pumping efficiency of He?						
How can we increase the He neutral source in the divertor?			?				
	What will Ar frosted cryo-pumps ch	hange?	I can comb	I can combine with CP if we do He/NBI			

He enrichment –	Route to decouple He and H exhaust				
	Can we de-couple He from H (T) exhaust?				
	What affects one but not the other?				
	Is τ_{α} following τ_{H} or $\tau_{Impurities}$				
	Differences in pumping efficiency between H and He?		Dieter for neutral conductunces		
	Can we increase He enrichment of pump gap vs divertor plasma ngup/div				
	Do we see changes in impurity source, with He e	nrichment?			
	 Higher physical sputtering and hig 	ther C source?			
1					

Characteristic parameters

Characteristic parameters

- 1. He removal and enrichment (maximization) Questions to answer:
 - 1. τα*/τE < 10?
 - 2. How can we decrease τα*, study it properly?
 - 3. How can we increase the pumping gap neutral pressure (and later also further to the pumps)?
 - 4. Can we de-couple He from H (T) exhaust He enrichment?
 - 5. Is He retention good enough for the IRC vs ERC regimes?
- 2. Knobs
 - 1. Strike-line location ($I_{cc} = [0..2]$ kA)
 - 2. Island size (correct its position) (-> optimum λ_0 for He -> EMC3-EIRENE)
 - 3. Magnetic configuration: standard vs high/low-i islands connection
 - 4. Density scan
 - 5. Power scan
 - 6. Different puffing locations
- 3. Metrics
 - 1. Puff/pump studies
 - 2. He-NBI/pump studies
 - 3. $\eta_{gap/div}^{enrich}$
 - 4. $P_{He}(t), P_{H2}(t)$
 - 5. τ_{He}, τ_{H2}
 - 6. Hel, H balmer lines
 - 7. He, H densities
- 4. Attachment -> Detachment: pressure stays constant (should drop) done for H. But what about He?
- 5. Non-resonant configuration (Geiger + Schmitz + Garcia)
- 6. Influence of He on neutral conductance by Dieter
- $\sqrt[3]{}$. Cryo pumps will increase H_2 pumping => He enrichment? + Possibly Ar frosting.

1. He exhaust studies at W7-X

- 1. Standard configuration
 - 1. Attached plasma
 - 2. n_{el} = [3, 6, 10] x10¹⁹ m-3
 - 3. P_{ECRH} = [6, 10] MW
 - 4. I_{cc} = [0, 1, 1.5, 2] kA
 - 5. 2 He-puffs from the divertor nozzles during a discharge (which nozzle(s)?) +1 (N = 13)

3 shots (N = 3 shots)

 x^{2} (N = 12)

(N = 6)

x2

- 2. High-mirror
 - 1. 1 shot from 1 +1 (N = 14)
- 3. High-i
 - 1. 1 shot from 1 +1 (N = 15)
- 4. Low-l
 - 1. 1 shot from 1 +1 (N = 16)
- 5. Repeat [1 5] in OP2.2 with He-NBI blips (if discharges are longer, then we can combine)

- 2. He exhaust during detachment
- 2 shots as in 1.1, but higher density and power 2 (N = 2)
 - 3. Influence of cross-field talk on He exhaust
- 1^{st} , 3^{rd} , 5^{th} He nozzles at the divertor 2 (N = 2)
- Change island size and compensate shift by PC +2 (N = 4)
 - 4. Influence of CVP He enrichment (combine with CP)
- 2 shots as in 1.1, but with CVP 2 (N = 2)
 - 5. Influence of non-resonant configuration on He exhaust (needs to be clarified)
- 2 shots as in 1.1

Repeat in OP2.2 with He-NBI blips (if discharges are longer, then we can combine)

2

(N = 2)

Objective:

- Examine influence of He exhaust on neutral conductances Approach:
- No plasma and plasma experiments, known gas injection
 - \rightarrow Pressure measurement at different locations
 - \rightarrow Define conductances between pressure gauges (compare with modeling)
- Repeat for different levels of He/H mixture
- Overlap with other proposals in H-exhaust subgroup (can probably be merged) Requirements:
- Pressure gauges to measure neutral pressures
- Known gas injection

Q&A

